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Abstract

The electrocardiogram (ECG) signals bear fundamental information for deciding about heart

diseases. So the scientific community has been performing many efforts during decades to extract

features of heartbeats via ECG records with high accuracy and efficiency using different strategies

and methods. However, the noise and artifacts provided by external factors avoid significant

patterns associated with the ECG signals. These patterns play an important role to find specific

abnormalities in ECG signals. Hence, techniques based on unbiased FIR (UFIR) filtering promises

better results. In this dissertation, we have applied a model based on UFIR to ECG signals.

Hence, we compare the proposed technique with traditional method such as predictors, standard

filters (e.g. low-pass filter) wavelet filters, Savitsky-Golay filter. The UFIR method outperforms

other studied techniques for ECG signals.
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Chapter 1

Introduction

1.1 Background

The electrocardiography (ECG) signals play a key role in diagnosing diverse kinds of heart dis-

eases. World health organization (WHO) shows that cardiovascular diseases (CVDs) are the

amount one cause of death globally: more people die annually from CVDs than from any other

cause [5]. Because pulses produced by heart may have subtle differences from each other and

noise affects the decision accuracy, the ECG is performed using precise electronic equipment

[6]. Accurate measurements are required when data are used to extract features of ECG signals

and make decisions about different heart diseases using special software. However, even precise

measurements are contaminated by artefacts and noise. Artefacts may result from a variety of

internal and external causes, such as the Parkinsonian muscle tremors drying electrode gel. Dif-

ferent noises may contaminate the ECG signal during its acquisition and transmission, such as

the high frequency noise (electromyogram noise, additive white Gaussian noise, and power line

interference) and low frequency noise (baseline wandering). Because noise may lead to wrong

interpretation, ECG signal denoising is required. Therefore, meaningful attention has been paid

during the last decades to develop mathematical methods and computation algorithms to extract

the ECG features from regular (noisy) data with an accuracy sufficient for medical needs [7–17].

The Fourier transform-based approach has been developed in [18] to extract ECG signal features

in the frequency domain. But, this method omits the time resolution, which affects the estimation

accuracy. This issue has been circumvented in some other works by providing the time-frequency

analysis without affecting the resolution. In [19–22], the wavelet transform-based algorithms were

developed to find applications in some medical areas. In the wavelet domain, a compromise be-

1
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tween the frequency and time resolutions is more easily achievable and one can select a proper

wavelet to provide a reasonable accuracy. However, a choice of an optimal wavelet is still chal-

lenging [23] and the approach has low efficiency in smoothing ECG signals. Other algorithms

tested for such needs include the principal component analysis (PCA) [24], linear discriminant

analysis (LDA) [25], independent component analysis (ICA) [26], support vector machine [27],

and neural networks [28].

One of the recognized approaches proposed in [29] provides noise reduction and features

extraction from ECG data by employing linear prediction based on the theory developed in [1].

The approach suggests that principal features of ECG signals can be saved and gained using a

one-step linear predictor. Accordingly, features extraction in the QRS complex (region of fast

ECG excursions) is provided from an analysis of residual errors between the data and estimates.

The approach has manifested itself as useful in the detection of arrhythmias. In other works

employing one-step prediction [30, 31], automatic classification of the ECG cardiac abnormalities

is provided using Gaussian mixtures. Later, the prediction-based approach has been recognized

as one of the standard techniques suitable for ECG signals [32]. It has to be remarked now that,

from the standpoint of optimal filtering, prediction is less accurate in noise reduction than filtering

and much less accurate than smoothing. On the other hand, the ECG signal processing problems

do not imply predicting future values and smoothing with some time-lag may be a better choice

for cardiac analysis. A classical example is the Savitzky-Golay filter (smoother) [33], which has

found wide applications in diverse areas [34–39].

1.2 Motivation

It is known that the electrocardiogram (ECG) signals bear essential information about differ-

ent kinds of heart diseases. Therefore, different strategies have been developed during decades

to investigate ECG signals and extract critical features with highest accuracy and efficiency

[9, 14, 16, 40, 41]. Several algorithms have analysed the patterns extraction in ECG signals.

Among these patterns, we can find fiducial features, rhythm variabilities, noise detection based on

agglomerative clustering of morphological features and information about the atrium behaviour.

Morphological characteristics associated to ECG signals are typically learned through the P, QRS,

and T waves, using appropriate methods of ECG signal denoising and features extraction [17, 41–

51]. Even so, it is still challenging to reach accurate results due to errors caused by data noise and

artifacts induced by data acquisition equipment. In addition, methods developed for denoising
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and features extraction based on the Fourier transform assume that ECG signals are stationary

and ignore time resolution. A better trade off between the frequency and time is guaranteed by

the wavelet transform-based algorithms, provided that a proper wavelet is chosen [42, 52–65].

Other methods can also be applied to ECG signals, such as the empirical mode decomposition

(EMD) and Hadamard transform [66, 67]. To increase the accuracy, several authors combined

the above methods with approaches such as the principal component analysis (PCA) [24, 26],

support vector machine (SVM) [27], and neural networks or deep learning techniques [28, 65].

An optimal approach to provide smoothing and state estimation in linear models has been

proposed in [68] to minimize the mean square error (MSE). A solution was found on a horizon

[m− p, n− p] of N data points, where n corresponds to a fixed discrete point of the ECG signal,

m = n − N + 1, and p is a discrete shift. The derived optimal FIR (OFIR) filter becomes

smoothing with lag q = −p by p < 0, provides filtering with p = 0, and becomes p-step predictive

when p > 0. However, the p-shift OFIR filter requires information about noise, which is not

completely available for ECG signals.

A special case of the p-shift OFIR filter is the p-shift unbiased FIR (UFIR) filter [68–71],

which completely ignores zero mean noise and is thus more suitable for ECG signals. As being

more general, the p-shift UFIR filter generalizes the Savitzky-Golay filter by p = −(N −1)/2 and

linear predictor with p > 0. Although such a filter does not require noise statistics except for the

zero mean assumptions, it provides considerable optimal estimates when N is optima ( Nopt).

To calculate Nopt, it is essential to consider the minimizing of the MSE (mean square error)

[68]. It is clear that a disadvantage of the batch p-shift UFIR filter [69] works in slow operation,

which causes a computational burden and complexity in denoising and features extraction [72].

A disadvantage of the batch p-shift UFIR filter [69] resides in slow operation, which causes a

computational burden and complexity in denoising and features extraction [72].

Moreover, the UFIR [69] and Savitsky-Golay [33–38] smoothers were designed to de-noise

signal with no extra information about the ECG signal state required to facilitate features ex-

traction. However, Let us also notice that the Savitsky-Golay filter was recently modified to be

optimal in the minimum mean square error (MSE) sense [34, 35]. The modification is akin to

the optimal UFIR filter [73], which produces a maximum likelihood estimate [74]. Because both

these solutions require information about noise, which is not well studied in ECG signals, the use

of the UFIR smoother becomes more preferable.

A more efficient state space iterative p-shift UFIR algorithm using recursions was designed by
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Shmaliy in [72] and then developed and applied with different purposes in many papers [68, 69].

Although the iterative UFIR smoother [72] provides much more information than the batch UFIR

[69] and Savitsky-Golay [33] structures, its development for features extraction in ECG signals

still has not been addressed in the literature this motivates our work. In this case, two models

for ECG signals have been considered: polynomial and harmonic.

1.3 Hypothesis

The UFIR filtering techniques works adequately in low frequency signals by unknowing its statis-

tical parameters. Hence, if we apply UFIR filtering with horizon Nopt in ECG signals, we could

find stronger estimation and extraction of temporal features. For validating this hypothesis, we

establish the objectives following section.

1.4 Objectives

1.4.1 General objective

• Design a denoising and features extraction system of ECG signals using unbiased FIR

(UFIR) estimation techniques.

1.4.2 Specific objectives

• Develop an adaptive-horizon UFIR smoothing filtering for denoising ECG signals and ex-

tracting features

• Employ an iterative UFIR smoother in state space to increase accuracy of extracting features

and fiducial points detection in ECG signals

• Design an optimal q-lag state-space UFIR smoothing algorithm for ECG signals denoising

and artifacts removal

• Implement a UFIR filter based on harmonic model to remove noise in ECG signals.

• Compare different unbiased FIR estimation techniques with proposed methods for denoising

and features extraction in ECG signals
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1.5 Scope

This investigation is divided into three parts:

In the first part, we develop an adaptive-horizon UFIR smoothing filtering algorithm for denoising

ECG signals and extracting features. Here, we also investigate the trade-off between the UFIR

smoothing filter, UFIR filter, and UFIR predictive filter and compare them to the standard linear

predictor suggested in [29]. Focused on the design of efficient algorithms, this first work is limited

to data associated with normal heartbeats and postpone an analysis of different kinds of heart

diseases to future works.

In the second part, we develop and use an iterative UFIR smoother in state space. The principal

aim is to increase accuracy of the features extraction and fiducial points detection. We develop

an optimal q-lag state-space UFIR smoothing algorithm for ECG signals denoising and artifacts

removal, an algorithm for ECG signal stable features extraction using different classifiers under

unknown noise and finally, a high-accuracy patterns classification for ECG signals with atrial

fibrillation (AF) and normal conditions. We test the results by different classifiers and compared

to those available from several machine learning techniques.

In the third part, we develop a UFIR filter based on harmonic model. Here, we represent an ECG

signal with a Fourier series, apply the UFIR smoother to real measurements of ECG signals, and

provide a comparative analysis with the polynomial smoothers developed by Lastre et. al [4]

[3] in terms of the denoising effect. In general, the polynomial and harmonic model have been

implemented for designing the UFIR filters in ECG signals. We base this investigations on the

MIT-BIH Arrhythmia and PTB Database available for free [75, 76].

1.6 Highlights

• Suboptimal denoising of ECG signals with no requirements to noise, except for the zero

mean assumption.

• Unbiased filtering in the QRS region, in which the ECG signal demonstrates rapid excur-

sions.
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• An optimal q-lag state-space UFIR smoothing algorithm for ECG signals denoising and

artifacts removal.

• An algorithm for ECG signal stable features extraction using different classifiers under

unknown noise.

• High-accuracy patterns classification for ECG signals with atrial fibrillation (AF) and nor-

mal conditions.

• An optimal horizon N harmonic UFIR smoothing algorithm for ECG signals denoising.



Chapter 2

Foundations

This chapter describes the essential concepts used in this dissertation. Initially, we provide a brief

definition of the electrocardiogram signals in the sense of its morphological characteristics. In

addition, we detail the used database and some pathologies. We also recognise some concepts of

estimation theory as a fundamental part of this work. Finally, although we had explained a brief

idea about literature in the first chapter, we profound some techniques definition which compares

with the proposed UFIR techniques.

2.1 ECG signals foundations

A heartbeat or the ECG complex contains different waves divided among themselves by distinct

intervals [2] (Fig. 2.1). The P-wave represents a depolarization in the right and left atrial,

which is provided by sinus node. Normally, the P-wave is positive in most of the leads. In LII

(Lead II), the P-wave amplitude is registered to be larger [77]; it does not surpass 2, 5mV and

its duration does not exceed 0.1 s. The QRS complex follows the P-wave and represents the

ventricular depolarization. This complex is composed by Q, R and S points (sometimes called

waves) and the duration of QRS complex normally ranges from 0.06 s to 0.10 s, although it varies

with heartbeat rate (cardiac frequency) and is smaller in children. The T-wave starts from the

isophasic line and can adopt several forms such as tall, pointed, flattened, inverted and biphasic.

The T wave length varies considerably. However, habitually it mostly measures 2mm and is

positive in all of the leads, excepts for aVR that is negative. The nature of the U-wave is still

not well understood and it is hard to recognize this wave in most of the leads. What follows

from many measurements is that this wave is positive. Hence, The morphology of heartbeat

7
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Figure 2.1: Representation of a Heartbeat.

is fundamental for extracting features of ECG signals, which are quasi-periodic as sketched in

Fig. 2.2. The heartbeat pulse can be represented with four fundamental features: P-wave (left

slow excursion), QRS-complex (central fast excursion), T-wave (first right slow excursion), and

U-wave (second right slow excursion).

Several problems arise while processing ECG signals shown in Fig. 3.1

• Measurement data are commonly contaminated by noise, which may not be Gaussian and

white.

• Standard features depicted in Fig. 3.1 must be estimated with highest accuracy to avoid

medical mistakes.

• The ground truth (reference model) is not available to tune an estimator optimally.

Under such conditions, two approaches relying on accurate identification of heartbeat pulses

are commonly considered to extract ECG signal features: fiducial and non-fiducial. The fiducial
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Figure 2.2: The heartbeat pulse model represented with features (amplitudes and durations) of

the P-wave, QRS complex, T-wave, U-wave, and ST angle.

approach refers to the characteristics such as amplitude and heart rate, which are related to

the duration, amplitude, and wave shape [78–83]. The non-fiducial approach refers to quasi-

periodicity of ECG signals [32] and all features are separated into three main categories based on

autocorrelation, phase-space, and frequency-domain analysis.

2.1.1 Database

Over years, the medical sector together with engineers has collected information about biomedical

signal. These data are fundamental for detecting and prediction of some diseases. Among these

data, the electrocardiogram (ECG) signals play a significant role in our society. We base our

work on the PhysioNet resources platform also known as Research Resource for Complex Physi-

ologic Signals and managed by members of the MIT Laboratory for Computational Physiology.

The other core laboratory of the PhysioNet Resource is the Margret and H.A. Rey Institute

for Nonlinear Dynamics at Beth Israel Deaconess Medical Center [76]. This platform contains

several physiological and clinical records taken from different databases such as the MIT-BIH

Arrhythmia (MITDB) and PTB Diagnostic ECG database. PTB means Physikalisch-Technische

Bundesanstalt also it is known as National Metrology Institute of Germany.
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MIT-BIH Arrhythmia

The MITDB describes 48 records with normal and abnormal rhythms taken from 47 subjects.

The records are sampled to 360Hz per lead with 11-bit resolution over a 10mV range. This

database provides the records in two leads, where the most common is the MLII (modified lead

II). Other leads are also used, such as V1, V5, etc. A key issue is to choose the lead that most

clearly reflects the ECG signal morphology.

PTB diagnostic ECG database

The PTB belong be the PhysioNet platform database [76]. This database contains 549 records

from 290 subjects aged between 17 to 87 years old. Each record enclose 15 simultaneously

measured signals by 15 leads. The signal is digitized at 1000 samples that corresponds to 10

KHz. The database contains the following diagnosis classes: Myocardial infarction, heart failure,

bundle branch block, disrhythmia, myocardial hypertrophy, valvular heart disease, myocarditis,

and healthy control (see 2.1).

In this collection, the ECGs were obtained using a non-commercial, PTB prototype recorder

with the following features:

• Input channels, (14 for ECGs, 1 for respiration, 1 for line voltage)

• Input voltage: ± 16 mV, compensated offset voltage up to ± 300 mV Input resistance: 100

Ω (DC)

• Resolution: 16 bit with 0.5 µV/LSB (2000 A/D units per mV) Bandwidth: 0 - 1 kHz

(synchronous sampling of all channels)

• Noise voltage: max. 10 µV(pp), respectively 3 µV (RMS) with input short circuit

• Online recording of skin resistance Noise level recording during signal collection

2.1.2 Analysed pathologies

Atrial fibrillation

In the ECG, the waves of atrial fibrillation (AF) could be difficult to localize to any repetitive

and stable circuit in the atria. Most cases of AF are thought to originate in the area of the

pulmonary vein left atrial junctions. The atrial tissue becomes involved in the active maintenance
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Table 2.1:

Diasnostic Class Number of patients

Myocardial infartion 148

Cardiomyopathy/Heart failure 18

Bundle branch block 15

Dysrhythmia 14

Myocardial hypertrophy 7

Valvular heart disease 6

Myocarditis 4

Miscellaneous 4

Healthy controls 52

of the arrhythmia, related to the simultaneous formation of multiple unstable entrant circuits

throughout the atria. AF is also one of the most frequently observed arrhythmias in patients

with structural heart disease. The predominance of this arrhythmia increase with older people.

Common diagnostic include coronary artery disease, hypertensive heart disease, and valvular

heart disease. Patients with coronary artery disease may experience AF for the first time during

an acute myocardial infarction (MI) or commonly, as a consequence of chronic ischemic myocardial

disease, possibly because of associated atrial dilation or fibrosis. In addition, the left atrial

enlargement is frequently related to hypertensive pathology.

Atrial premature complex

Atrial premature complexes (APCs) occur when the ectopic stimuli and are heartbeats arising

from loci in either the left or right atrium, or inter-atrial septum, but not the sinoatrial (SA)

node itself. The atria, therefore, are depolarized from an ectopic site. After an atrial or junc-

tional depolarization, the stimulus may spread normally through the His-Purkinje system into
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the ventricles. APCs may occur often or sporadically. Two APCs occurring consecutively are

referred to as an atrial couplet.

APCs may occur in people with normal hearts or with practically any type of heart disease.

Hence, the presence of APBs does not imply that an individual suffers from cardiac disease. In

normal people, these premature complexes can be associated with emotional stress, excessive

intake of caffeinated drinks, or the administration of sympathomimetic agents (epinephrine, iso-

proterenol). APCs may also occur with hyperthyroidism. Even, APC produces palpitations; in

this situation, patients may complain of feeling an irregular pulse. This pathology may also be

seen with various types of structural heart disease such as atrial fibrillation. The APC is also

characterized by premature beating originated in the atria and can occur in different situations

such as infection, myocardial ishemia, inflamation, usage of tobaco, alcohol, and caffeine, or anx-

iety and hypokalemia [84]. A fragment of the ECG heartbeats is shown in Fig. (2.3), in which

one recognizes features such as P, QRS complex, and T. As can be seen, the APC represents

abnormal P-wave morphology providing a compensatory pause.

MLII

APCNormal Normal

P P PT T T T

R

S

RRR

QQQQ S S S

Figure 2.3: Typical ‘normal’ and ‘APC’ heartbeats from ECG.

Inverse T-wave

The T wave represents ventricular depolarization. This wave is located after QRS-complex.

Ocasionally, the T-wave provides irregular behaviours (see fig 2.4). Because depicts the relative

refractory period of ventricular depolarization, a period where the cells of heart are vulnerable to

the aditional stimuli. Habitually, the T-wave is positive in normal conditions. May be negative

en some leads as LIII and precordial leads V1 and V2. But, never must be negative in LI and
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LII [85]. A peaked T-wave can indicate hyperkalemia or myocardial injury. Inverted T waves in

some leads may represent myocardial ischemia.

Inverted T-wave

(b)

V5

MLII

MLII

V2

(a)

Normal T-wave

Figure 2.4: Representation of the normal and abnormal T-wave



Chapter 2: Foundations 14

2.2 Estimation theory

Electronic signal processing systems can be designed under foundations of estimation theory.

These systems extract information and require estimating parameters by satisfying a determined

model. Systems such as radar, communication, sonar, speech, seismology, image analysis, control

and biomedicine share the trivial issue of needing to estimate the values of a group of parameters

[86]. In this investigation the foundations about estimation theory play a important role for

denoising and features extraction of electrocardiogram ECG signals.

Problem formulation: Modelling of estimation

The first step to determine a good estimator is to fit the data to a mathematical model. Con-

sidering that data are random, a probability density function (PDF) can be parametrized upon

unknown parameters θ,

p(x[0], x[1], . . . , x[N − 1]; θ), (2.1)

Figure 2.5: Dependence de PDF on unknown parameters

i.e., we stablish a class of PDFs determined by different values of θ. The semicolon denote

this independence. To illustrate, if N = 1 and θ indicate the mean, then the PDF of data would

be expressed as

p(x[0]; θ) =
1√
2πσ2

exp[
0.5

σ
(x[0]− θ)2] (2.2)

which is depicted in Figure 2.5 for distinct values of θ. It should be naturally obvious that

because the value of θ influences the probability of x[0], we should be able to assume the value

of θ from the observed value of x[0]. For example, if x[0] < 0 then it is uncertain that θ = θ2.
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The value θ = θ1 might be more reasonable. This specification of the PDF is fundamental for

determining an appropriate estimator.

2.2.1 Estimator evaluation

Given the measurement signal x[n] shown in the figure 2.1, where A is the reference signal

corrupted by noise w[n] with zero mean, we can express a model as follow

x[n] = A+ w[n] . (2.3)

Considering the data set x[0], x[1], . . . , x[N − 1], it is possible to estimate A. Intuitively, the

average de x[0] can determine the value A. Then, we can estimate A as

Â =
1

N

N−1
∑

n=0

x[n] (2.4)

Here, we consider a estimator of A, e.g Ã = x[0]. However, this information appropriately

does not represent the data. An estimator should be a function of the data determined as random

variables. Then, to evaluate of estimator performance, we employed a statistical analysis. Then,

a significant number of experiments is necessary to reach the value closer of A. We consider the

concentration of the histogram of the sample mean value Â and sample Â for 100 iterations ( The

figure 2.7 represents the histogram which describes the number of times the estimator produces

a given range of values and is an approximation to the PDF). To demonstrate that Â is better

than Ã, we could establish that the variance is less. We assume a model with zero mean noise

w[n] and variance σ2. Then, it is appropriate to demonstrate that the mean of each estimator is

the true value,

E(Â) = E(
1

N

N−1
∑

n=0

x[n])

=
1

N

N−1
∑

n=0

E(x[n])

= A

(2.5)

and, E(Ã) = E(x[0]), then E(Ã)=A. The variances can be expressed as,



Chapter 2: Foundations 16

0 10 20 30 40 50 60 70 80 90 100

Samples

-3

-2

-1

0

1

2

3

A
m

p
li

tu
d
e

Figure 2.6: Random data sample for A

var(Â) = var(
1

N

N−1
∑

n=0

(x[n])) =
1

N2

N−1
∑

n=0

var(x[n])

=
1

N2
Nσ2

=
σ2

N

(2.6)

give that w[n] component is uncorrelated and thus

var(Ã) = var(x[n]) = σ2

> var(Ã).
(2.7)

Finally, it is reasonable to say that an estimator is a random variable where its performance

can be described by its probability density function (PDF).
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Figure 2.7: Histogram for sample mean Â (a) and first value Ã (b)

2.2.2 Unbiased estimation

For an estimator to be unbiased we rough that on the average the estimator will provide the true

value of the unknown parameter. Since the parameter value may be anywhere in the interval

x1 < θ < x2, unbiasedness property argues that no matter what the true value of θ, our estimator

will yield it on the average

The unbiasedness describe that no matter what the true value of θ, our estimator will yield

it on the average . Analytically, an estimator is unbiased if

E(θ̃) = θ, x1 < θ < x2 (2.8)

where x1 and x2 denotes the range of possible values of θ. To illustrate, we consider the

following observation,
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x[n] = A+ w[n] n = 0, 1, . . . N − 1 (2.9)

Here, A is the parameter to be estimated and w[n] is white Gaussian noise (WGN). The

parameter A takes values in the interval −∞ < A < ∞. Hence, a estimator for the average value

of x[n] can be represented by

Â =
1

N

N−1
∑

n=0

x[n] (2.10)

then, analysing the linearity properties of the expectation operator for all A. We employed

the same analysis expressed in (2.5)

E(Â) = E
∣

∣

∣

1
N

∑N−1
n=0 x[n]

∣

∣

∣

= A

(2.11)

Hence, the sample mean estimator is unbiased. Here, we consider an unbiased estimator that

has symmetric PDFs centered on the real value of θ over the constraint given by (2.8)

2.2.3 Criterion of minimum variance

For finding the optimal estimators, a optimal criterion it is necessary. A natural one is the mean

square error (MSE), defined as

mse(θ̂) = E[(θ̂ − θ)2] (2.12)

Therefore, this defines the average mean squared deviation of the estimator from the true

value. However, the assumption of this natural criterion induces to impossibly to achieve a

realizable estimator. This cannot be defined justly as a function of the data. To understand the

problem which arises the equation (2.12) can be rewrite as

mse(θ̂) = E

{

∣

∣

∣(θ̂ − E(θ̂)) + (E(θ̂)− θ̂)

∣

∣

∣

2
}

= var(θ̂) + |E(θ̂)− θ|2

= var(θ̂) + bias2(θ)

(2.13)

which demonstrates that the mean square error (MSE) depends on the variance and bias of

the estimator.



Chapter 2: Foundations 19

For practical effects, the minimummean square estimator (MSE) is no required. A trustworthy

alternative is to constrain the bias to zero and find the estimator which minimizes the variance.

This estimator is called the minimum variance unbiased estimator (MVUE).

This estimator belongs to classical estimation methods such as: Best linear unbiased estima-

tor, maximum likehood estimator (MLE) and Gauss’s least square (Gauss’s LS) among others.

Unlike the above mentioned methods, Bayesian estimation methods such as the famous Kalman

filter have been considered to be into of modern methods. however, this method it is consid-

ered when a model of problem is known. Then, a promising alternative is to apply a robust

filter such as the unbiased FIR filter (UFIR) which could be considered as versatile structure

depending of problem. It mean this structure can work like filter, smoothing and prediction.

Also, the UFIR structure can be represented into two models: Polynomial and harmonic model.

The chapters following describes the UFIR estimator developed by Carlos Lastre-Dominguez for

electrocardiogram signals.

2.3 Previous work for ECG signals

2.3.1 Time based techniques

Techniques such as linear prediction, Savitsky-Golay smoothing, median filter, notch filter and

standard filter such as low pass filter and passband filter have been widely employed for ECG

signals. Each technique have been employed during decades for ECG signal features extraction.

Among these methods, the linear predict approach proposed in [1] and developed by Martis [32]

has been recognized as one of most efficient. The method employs the following model

λ̂(n) =

q
∑

i=1

δ(i)λ(n− i) , (2.14)

in which λ(n) is the original ECG pulse, q is the estimator order, and δ(i) is the linear prediction

coefficient. The estimate λ̂(n) is provided as a linear weighted combination of λ(n− i), i = [1, q].

The residual error

ε(n) = λ(n)− λ̂(n) , (2.15)

is considered as the ECG signal fraction, which cannot be predicted. To compare with the UFIR

filter, we will assign q = 2 as suggested by Lin et. al. [29].

The UFIR filter predicts estimates with p > 0 and both the prediction estimator (2.14) and

the UFIR predictive filter represented by equation (3.2a) and described in chapter 3, employ
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Table 2.2: Previous work for ECG signals

Literature Approach Limitation Database

Peyman et. al.[24] EMD Empirical FECG

Manpreet et. al. [25] DTW Limited to mother wavelet MIT-BIH Arrhythmia

Martis et. al. [26] DTW Limited to mother wavelet MIT-BIH Arrhythmia

Martis et. al. [31] Linear predict Increase the signal noise MIT-BIH Arrhythmia

Berk et. al. [39] S-G smoothing p-lag limited to middle of horizon N MIT-BIH Arrhythmia

Golden et. al. [18] TF Resolution loss Own database

Rajesh et. al. [23] EMD Empirical MIT-BIH Arrhythmia

Goel et. al. [56] DTW-PSD Limited to mother wavelet Own database

discrete linear prediction of the undergoing process via its noisy data . Even so, there are some

zones in the ECG picture where linear predictors are unsuccessful in extracting ECG features.

Therefore, a comparative analysis of different methods developed in [68–71] is required.

The Savitzky – Golay filter (SG) is a filter, first described in 1964 by Abraham Savitzky

and Marcel JE Golay. The SG approach performs on the calculation of a k-degree polynomial

localregression, with at least k+1 equally spaced points, to determine the new value of each point.

The result will be an input function smoothed. The primary advantage of this approach is that it

preserves characteristics of the initial distribution such as the relative maxima and minima, and

the width of the peaks, which commonly disappear with other averaging approaches such as the

moving average.

2.3.2 Frequency based techniques

Methods of ECG analysis in the time domain methods provide better visualization of the data,

but the alterations on time in the amplitude and frequency of ECG are not particularly well

defined. Many techniques such as describe significant classification efficiency, they have been

assessed on noise free conditions. In real scenario, we should consider noise, baseline wander

and artifacts. There is a requiring to analyze the information from these noisy ECG data . To

analyze such hidden information in the ECG data, different frequency domain methods such as

the Fourier transform and the power spectral density (PSD) methods have been investigated.
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2.3.3 Time-frequency based techniques

In the case of wavelet transform (WT or DWT ) , the frequency resolution may be prejudiced

to some extent to raise the temporal resolution. Hence, the inverse of frequency called the scale

is employed. The wavelet transform provides multiple resolutions, recognized as multi-resolution

analysis. Wavelet transform can need discrimination between two distinct signals with the same

spectrum magnitude (absolute amplitude of frequency spectrum. The translation and the dilation

of basis function known as mother wavelet which allows the extensive spectrum of coordinates at

every scale.

2.3.4 Empirical mode decomposition

Empirical mode decomposition (EMD) is a nonlinear and adaptive approach representing the

detailed fluctuations in the signal. This technique extends a determined ECG signal into a few

number of intrinsic mode functions (IMFs) to provided the instantaneous frequency. Instanta-

neous magnitude and its frequency are obtained from the IMFs. The IMFs are amplitude and

frequency modulated waves. The table 2.2, we describe some previous works and its limita-

tions. In the following chapter, we develop a Unbiased finite impulse response (UFIR) smoothing

appropriated for ECG signals.



Chapter 3

Denoising and features extraction for

ECG signals using unbiased finite

impulse response (UFIR) smoothing

In this chapter, we develop an adaptive-horizon UFIR smoothing filtering algorithm for denois-

ing ECG signals and features extraction. We also investigate the trade-off between the UFIR

smoothing filter, UFIR filter, and UFIR predictive filter and compare them to the standard lin-

ear predictor suggested in [29]. We base our investigations on the MIT-BIH Arrhythmia Database

available for free use from [75, 76]. Focused on the design of efficient algorithms, in this work we

limit our investigations by data associated with normal heartbeats and postpone an analysis of

different kinds of heart diseases to future investigations. The rest of the chapter is organized as

follows. In the section 3.1, we develop the theory of the algorithms proposed. In the section ??,

we perform the validation by defining the methods based on linear prediction. The experimental

results are showed in the Sections 3.2, 3.3, 3.3.3 where we provide a comparison between the

UFIR, UFIR smoothing, and UFIR predictive filtering algorithms. A discussion of the results is

provided in Section 3.4.

3.1 p-shift UFIR smoothing filtering

Let us suppose that the ECG signal xn (Fig. 3.1) is contaminated by zero mean additive noise vn

with unknown statistics. Then measurement sn of xn can be represented in discrete time index

22
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n as an additive sum of

sn = xn + vn . (3.1)

In view of the fact that noise vn in (3.1) may not be white Gaussian and its statistics are

commonly not well-known, the best way to avoid large estimation errors is using filters that do

not require information about the statistics of noise. The p-shift UFIR filter, which completely

ignores noise and the initial conditions, can thus be considered as a good candidate.

On a finite horizon [m − p, n − p] of N points, the ECG signal can be represented with a

degree polynomial and the p-shift UFIR filter [69] applied to remove noise. In accordance with

[69], the UFIR estimate x̂n|n−p of xn via data sn taken from [m − p, n − p] can be found in the

convolution-based form of

x̂n|n−p =

N−1+p
∑

i=p

hli(p)sn−i (3.2a)

= WT
l (p)SN (p) , (3.2b)

where hln(p) , hln(N, p) is the {N, p}-variant impulse response of the l-degree UFIR filter, the

extended measurement vector SN is

SN (p) = [ sn−p sn−1−p · · · sm−p ]
T , (3.3)

and the filter gain matrix is given by

WT
l (p) = [hlp(p)hl(1+p)(p) · · ·hl(N−1+p)(p) ] . (3.4)

If to satisfy the unbiasedness condition

E{x̂n|n−p} = E{xn} , (3.5)

where E{z} means an average of z, then hln(p) can be represented as [69, 87]

hli(p) =

l
∑

j=0

ajl(p)i
j , (3.6)

where i ∈ [p,N − 1 + p] and the coefficients ajl(p) are defined by [69]

ajl(p) = (−1)j
M(j+1)1(p)

|D(p)| . (3.7)
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Here, |D(p)| is the determinant of matrix D(p) = VT (p)V(p), where V(p) is the N × (l + 1)

Vandermonde matrix,

V(p) =























1 p p2 . . . pl

1 1 + p (1 + p)2 . . . (1 + p)l

1 2 + p (2 + p)2 . . . (2 + p)l

...
...

...
. . .

...

1 N − 1 + p (N − 1 + p)2 . . . (N − 1 + p)l























(3.8)

and M(j+1)1(p) is the minor of D(p). Function hli(N, p) has the following fundamental properties

[69, 87]:

hli(N, p) =











nontrivial, p 6 i 6 N − 1 + p

0, otherwise

, (3.9)

N−1+p
∑

i=p

hli(N, p) = 1 , (3.10)

N−1+p
∑

i=p

hli(N, p)iu = 0, 1 ≤ u ≤ l . (3.11)

For low-degrees, l = 1 and l = 2, one can find hli(N, p) in Appendix A. For higher degrees,

hli(N, 0) can be computed using a recurrence relation [88, 89] and then hli(N, p) is obtained by a

projection. Of importance is that the UFIR estimate (3.2b) does not require the noise statistics

and initial values. The zero mean noise vn is allowed to have any distribution and covariance

[90, 91] that is a fundamental difference with optimal estimates.

3.1.1 ECG Signal denoising on adaptive horizons

The determination of optimal horizon Nopt is critical in UFIR filtering and smoothing [92]. Be-

cause a reference signal is unavailable for ECG data, Nopt can be found following [93] via the

mean square value (MSV) V (N, p) = E{εn(N, p)2} of the measurement residual εn(N, p) =

sn − x̂n|n−p(N). It has been shown in [93] that Nopt(p) can be estimated by minimizing the

derivative ∂V (N, p)/∂N as

N̂opt(p) = argmin
N

∂V (N, p)

∂N
+ 1 . (3.12)

To optimize the horizon, let us consider a single ECG pulse shown in Fig. 3.2. As can be

seen, the ECG pulse is slowly changing, except for a fast excursion in the QRS region. The slow

background requires an optimal horizon Nopt , Nopt(p) in order to provide best denoising with
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no essential bias. On the contrary, the QRS region requires a minimum horizon Nmin , Nmin(p)

of l + 1 points to track the behavior exactly. The horizon N must thus be adaptive.

Q
int

SQ

S
int

R

Nopt Nopt

Napt

Nmin

Figure 3.1: An original single ECG pulse corrupted by measurement noise (dashed) and the

denoised pulse (solid line). Slow parts of the ECG pulse require denoising with Nopt and a fast

excursion requires a minimum horizon length of Nmin = l + 1 points. Here, Q and S are the

morphology features of ECG signal, Qint and Sint represent the window width allowed for the

adaptation. The adaptive horizon Napt ranges from Nopt to Nmin.

3.1.2 General UFIR smoothing algorithm

The general UFIR smoothing algorithm is represented with a pseudo code as Algorithm 1. It

requires values of SN , N , and l described above. Function CalculateG provides a vector G =

[1 0 · · · 0]T andCalculateV calculates matrixV given by (3.8). Vector B contains the UFIR filter

coefficients (5.6). ProvidedV andB, the l-degree matrixWl is computed and estimate x̂n|n−p(N)

is provided by (3.2b). We will use this algorithm at different horizons as smoothingUFIR

function.
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Algorithm 1 General UFIR Smoothing Algorithm for Estimating x̂n|n−p(N)

Data: SN , l , N ,

Result: x̂n|n−p(N)

1: Begin :

2: G = CalculateG (l)

3: p=−(N − 2)/2

4: V=CalculateV (p, l, N)

5: B=(VVT )G

6: Wl(p)=VT B

7: x̂n|n−p(N)=Wl(p) SN (p)

3.1.3 Computing Nopt for ECG data

Optimal horizon Nopt is provided by the algorithm designed, which pseudo code is listed as

Algorithm 2. This algorithm requires the following variables: heartbeats data si, filter degree l,

a set of heartbeats beats, the number of heartbeats Nbeats, and the window width Interval.

By defining (3.8) and (3.9) and then analysing (3.12), the filter coefficients specified by (3.13)

are obtained for given l, N , and p. Next, coefficients are computed for (5.11) and estimate (3.1)

is provided as x̃n|n−p(N). Function IntervalQRS is introduced to detect Q and S via data si

and a value called Interval, which is related to the window width.

The window covers a region including Q and S and is used as Nmin. Because Nopt will produce

highly biased estimates around Q and S, the window is split into three parts:

x̃n|n−p(N)1 = x̃n|n−p(N)(1 : Qint − 1) , (3.13)

x̃n|n−p(N)2 = x̃n|n−p(Nmin)(Qint : Sint) , (3.14)

x̃n|n−p(N)3 = x̃n|n−p(N)(Qint : T) , (3.15)

where points Qint and Sint determinate the window width for Inteval. The horizon Nopt is applied

to the first part (3.13) and third part (3.15). In the second part (3.14), estimation is provided

with Nmin.

Function Cat is used to concatenate estimates (3.13)–(3.15) and compute the final estimate

x̂n|n−p(N). Provided x̂n|n−p(N), function Vn(N) is calculated for si in the N scale. This variable

is saved as Vi(N) to represent a whole set of data Vn(N) for different heartbeats. Provided

various values of MSV for each si, an average of Vi(N) is computed as Vavg. Because Vavg is
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Algorithm 2 Algorithm for estimating N̂opt using measurements

Data: si , l , beats, Nbeats, Interval

Result: N̂opt

1: Begin :

2: for i = 1 to Nbeats do

3: si= beats(i)

4: T=length(si)

5: for N = l + 1 to Nmax do

6: x̃n|n−p(N) = SmoothingUfir(si,N ,l)

7: [Qint Sint] =IntervalQRS(si, Interval)

8: x̃n|n−p(N)1 = x̃n|n−p(N)(1 : Qint − 1)

9: x̃n|n−p(N)2 = x̃n|n−p(Nmin)(Qint : Sint)

10: x̃n|n−p(N)3 = x̃n|n−p(N)(Sint + 1 : T)

11: x̂n|n−p(N)=Cat(x̃n|n−p(N)1, x̃n|n−p(N)2,

x̃n|n−p(N)3)

12: Vn(N) = E{[si − x̂n|n−p(N)]2}
13: end for

14: Vi(N) = Vn(N)

15: end for

16: Vavg(N) =Average(Vi(N))

17: V (N) = CubicFit(Vavg(N))

18: N̂opt = argmin
N

∂V (N)
∂N

+ 1
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accompanied with ripples causing ambiguities, it is further approximated with a cubic polynomial

using function CubicFit. The derivative applied to smoothed Vavg while solving the optimization

problem (3.12) yields Nopt.

3.1.4 Denoising algorithm for ECG signals

Provided Nmin and Nopt, the UFIR smoothing algorithm can be designed for ECG signals with a

pseudo code listed as Algorithm 3 . In this algorithm, function smoothingUFIR is applied to

different ECG signals parts with different horizons.

Algorithm 3 Algorithm for estimating x̂n|n−p in ECG signals

Data: SN , l , Nmin, Nopt

Result: x̂n|n−p

1: p = −(N−1)
2

2: for N = Nmin to Nopt do

3: x̃n|n−p(N) = smoothingUFIR ( SN , N , l )

4: end for

5: [Qint Sint Q S] =IntervalQRS(SN , Interval)

6: x̃n|n−p(N)1 = x̃n|n−p(Nopt)(1 : Qint − 1)

7: x̃n|n−p(N)2 = x̃n|n−p(Napt)(Qint : Q− 1)

8: x̃n|n−p(N)3 = x̃n|n−p(Nmin)(Q : S)

9: x̃n|n−p(N)4 = x̃n|n−p(Napt)(S + 1 : Sint)

10: x̃n|n−p(N)5 = x̃n|n−p(Nopt)(Sint + 1 : T )

11: x̂n|n−p= Cat ((x̃n|n−p(N)1, x̃n|n−p(N)2,

x̃n|n−p(N)3), x̃n|n−p(N)4), x̃n|n−p(N)5))

Five parts of the ECG signal are recognized by function smoothingUFIR over points Qint,

Sint, S and Q:

x̃n|n−p(N)1 = x̃n|n−p(Nopt)(1 : Qint − 1) , (3.16)

x̃n|n−p(N)2 = x̃n|n−p(Napt)(Qint : Q− 1) , (3.17)

x̃n|n−p(N)3 = x̃n|n−p(Nmin)(Q : S) , (3.18)

x̃n|n−p(N)4 = x̃n|n−p(Napt)(S + 1 : Sint) , (3.19)
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x̃n|n−p(N)5 = x̃n|n−p(Nopt)(Sint + 1 : T ) . (3.20)

In Fig. 3.2, the first and fifth parts are defined by (3.16) and (3.20), respectively to apply

Nopt. The third part represents an estimate, which is equal to the original ECG signal without

noise reduction on [Q, S]. The adaptive horizon Napt is applied to (3.17) and (3.19). Here, N

is decreased from Nopt to with a one-time step in the QRS complex region. Beyond the QRS

complex, N is gradually increased from Nmin to Nopt with a one-time step. Finally, function Cat

provides the ECG signal estimate at the last fifth part.

3.1.5 UFIR-based algorithm for features extraction

Provided denoising by Algorithm 3, in this section we develop an efficient computation algorithm

for ECG signal features extraction. To this end, we first localize special points on the ECG

heartbeat pulse and then compute relevant amplitudes, durations, and an angle. Unlike the

approaches developed in [20, 94, 95], this algorithm is based on the p-shift and l-order UFIR

smoothing filter exploited with l = 2 and p < 0. It was found out for data used that Nopt = 21

suites smooth parts of the discrete ECG signal and Nmin = 3 fits the QRS complex. Note that

Nopt and Nmin must be specified for each of the measured ECG signals.

Step-by-step events representing the strategy of ECG signal denoising and features extraction

are shown in Fig. 3.2. The original discrete-time ECG signal (a) is smoothed as (b) using

Algorithm 3. Then the ECG signal features are extracted as in the following:

• Fig. 3.2(c): The peak value R (ECG signal maximum) is estimated as R̂ and a window is

introduced with two points, Q′ and S′. The estimate Q̂ of Q is found as the least in the

interval between Q′ and R̂. The estimate Ŝ of S is found as the least between R̂ and S′.

• Fig. 3.2(d): Provided Q̂, R̂ and Ŝ, the QRS complex is suppressed to save only P and T

waves. Then the estimates P̂ of P and T̂ of T are obtained similarly by suppressing one of

the waves.

• Fig. 3.2(e): Provided P̂, the P wave is split into two segments, P1 and P2, where P1 is

extended from the initial point to P2. In segment P1, we apply the derivative. Next, we

consider a small section of the resulting signal and find a global maximum. We consider it

as a start point of P wave and call it Ponset. In segment P2, we also apply the derivative,

consider a small portion of the resulting signal, and find a global minimum. This minimum,

which corresponds to the end of P wave, is called Poffset. Values of Ponset and Poffset are
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Original ECG signal
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Smoothed ECG signal
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Figure 3.2: Step-by-step events representing the strategy of the ECG signal denoising and features

extraction: (a) original ECG signal, (b) smoothed ECG signal, (c) peak-value R, Q, and S, (d)

P and T points, (e) P wave, (f) duration of QRS complex, (g) T wave, and (h) ST-angle.

located at points1 Pon
p and Poff

p , respectively. Then, the duration of P wave is computed as

Pdur = Poff
p −Pon

p . A distance between P̂ and the baseline is calculated and called the wave

amplitude.

• Fig. 3.2(f): The QRS complex duration is obtained by the distance between points Q̂ and

Ŝ. The QRS complex amplitude is provided by a distance between the baseline and R̂.

• Fig. 3.2(g): Similarly, points Tonset and Toffset are obtained for the T wave by splitting this

wave into two segments, T1 and T2.

• Fig. 3.2(h): The ST-angle θ is computed by

a.b

|a||b| = cos θ , (3.21)

1Although Pon
p and Poff

p are omitted in Fig. 3.1, their values represent the temporal line in the ECG signal.

These points can be used to compute features of the duration and applied to Rp, Qp Sp, Pp, Tp, T
on
p , Toff

p , Sp and

S∗

p, which are described above in Algorithm 4.
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where a and b are vectors created from Ŝ and S∗. These values are localized in Sp and S∗p.

Vectors a and b have two components dependent on Ŝ and S∗. We consider a flat part,

where Sp and Ŝ represent the origin zero point. We sum a temporal unity from the origin,

obtain S∗ and S∗p, and rename S∗ as S∗y and S∗p as S∗x from xy plane. We then compute

a = S∗x + S∗y and b = 0x + S∗y and estimate θ via (3.18).

3.1.6 Algorithm design for features extraction of ECG signals

A pseudo code of the algorithm designed to extract features of ECG signal is shown as Algorithm

4. Here, ssi is the smoothed ECG signal represented as x̃ in Fig 3.2; Nb is the number of

heartbeats; Baseline is a variable, which represents the reference line; fs is the data sample

frequency; and Interval is a value, which determines the window width to cover Q and S points

(Fig 3.2). The algorithm output consists of estimates of the ECG signal features such as P̂ of P,

Pamp of the P amplitude, Pdur of the P duration, QRSe of the QRS amplitude, QRSdur of the

QRS duration, T̂ of T, Tamp of the T amplitude, Tdur of the T duration, and θ̂ of the ST angle

θ. All these features are extracted from the smoothed signal ssi.

The algorithm starts by computing R̂ as the ECG signal maximum, using function max.

Function IntervalQRS is applied to compute points Q′ and S′. The Interval variable determines

the window width to cover the QRS complex and obtain Q̂ and Ŝ as two minima between points

Q′ and S′. Function min is used to find the above-mentioned points. The supress function is

used to suppress the QRS complex. Function max is used to estimate P and T. Function diff is

introduced to compute the derivatives in the P1, P2, T1 and T2 intervals. Functionsmax andmin

with function diff are used to find Ponset, P
on
p , Poffset, P

off
p , Tonset T

on
p and Toffset T

off
p . Provided

the above-mentioned values, the duration is estimated of P and T features. Function length is

introduced to compute the signal length. The Baseline variable determines the reference line for

computing the amplitude features. This variable is equal to Poffset. Function vector is used to

provide vectors a and b based on Sp, Ŝ, S
∗
p and S∗. Finally, function arcos is used to compute

an angle between vectors a and b. Note that all the above introduced functions are available

from the authors by request.
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Algorithm 4 A pseudo code of the algorithm to extract morphological features of ECG signals

Data: ssi , Nb, Baseline, fs, Interval

Result: P̂, Pamp, Pdur, R̂, QRSe, QRSdur, T̂, Tamp , Tdur, θ̂

1: Begin :

2: for i = 1 to Nb do

3: ssi= beatss(i)

4:

[

R̂,Rp

]

=max(ssi)

5: [Q′ S′] =IntervalQRS(si, Interval)

6:

[

Q̂,Qp

]

=min(ssi(Q
′ : Rp))

7:

[

Ŝ, Sp

]

=min(ssi(Rp : S′))

8: ssnew=suppress(ssi(Q
′ : S′))

9:

[

P̂,Pp

]

=max(ssnew(1 : Q′))

10:

[

T̂,Tp

]

=max(ssnew(S
′: length(ssnew)))

11: P1=ssi(1 : Pp)

12: P2=ssi(Pp : Q′)

13:
[

Ponset,P
on
p

]

= max(diff(P1))

14:
[

Poffset,P
off
p

]

=min(diff(P2))

15: T1=ssi(S
′ : Tp)

16: T2=ssi(Tp:length(ssi))

17:
[

Tonset,T
on
p

]

=max(diff(T1))

18:
[

Toffset,T
off
p

]

=min(diff(T2))

19: Baseline(1:length(ssi)) = Poffset(i)

20: Pamp(i)=P̂−Baseline(i)

21: QRSamp(i)=R̂−Baseline(i)

22: Tamp(i)=T̂−Baseline(i)

23: Pdur(i)=(Poff
p − Pon

p )/fs

24: QRSdur(i)=(Sp −Qp)/fs

25: Tdur(i)=(Toff
p − Ton

p )/fs

26: S∗p = Sp + 1

27: S∗ = ssi(S
∗
p)

28: [a,b] = vector(Sp, Ŝ, S
∗
p, S

∗ )

29: θ̂(i)= arcos( a,b)

30: end for
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3.2 Testing of algorithms for estimating Nopt and denoising algo-

rithm

To test Algorithm 2 experimentally, we selected healthy heartbeats with 301 samples and esti-

mated errors by allowing Nmin ≤ N ≤ 103 for l = 1 (Fig. 3.3a), l = 2 (Fig. 3.3b), l = 3 (Fig.

3.3c), and l = 4 (Fig. 3.3d).

(a) (b)

(c) (d)

MSV

M
S
V

M
S
V

M
S
V

M
S
V

MSV

MSV
MSV

Figure 3.3: Effect of N on the MSV with a) l = 1, b) l = 2, c) l = 3 and d) l = 4 : the MSV is

circled,
√
VN is a cubic approximation of the MSV, and ∂

∂N

√
VN and

√

∂
∂N

VN are the derivatives

of
√
VN . The optimal horizon Nopt = 19 corresponds to the minimum of

√

∂
∂N

VN .

As can be seen, Vn behaves similarly for different degrees l. It can also be observed that

Nopt generally grows with l and elevates to Nopt = 27 when l = 4. Particularly in the algorithm
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Figure 3.4: Effect of the UFIR filter degree l on the estimation accuracy.

3, an analysis of estimation errors produced by the 2-degree and 3-degree UFIR filters reveals

no significant differences, except for the horizon length, which inherently grows with l. This is

explained by the fact that p = −(N−1)
2 makes the noise power gain (NPG) of both filters equal [69].

The role of p on the smoothing filter NPG has been studied by Shmaliy et. al. in [69]. However,

choosing l = 2 reduces the computational complexity, while saving the estimation accuracy, and

we accept l = 2 as near optimal. Effect of l on the estimation accuracy is illustrated in Fig. 3.3.

3.2.1 Critical evaluation of denoising algorithms

In Fig 3.4a, we illustrate typical denoising errors produced by the predictive filter, filter, and

smoothing filter, all having batch structures. A part of the ECG signal taken from [120:200] is

zoomed in Fig. 3.4b. The denoising errors are sketched in Fig. 3.5.

As can be seen, all UFIR filters are successful in denoising with consistent errors. Even so,

the UFIR smoothing filter does it more precisely while the predictive filter produces more errors.

The median of errors produced by the algorithms and represented with the dispersion are listed

in Fig. 3.6. This figure suggests that the UFIR smoothing filter outperforms both the UFIR

filter and the standard linear predictor developed in [32] for ECG signals. An analysis of the
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Figure 3.5: Denoising of ECG signals: (a) heartbeat estimation with different methods such as

ASmooth-UFIR (UFIR Adaptive-Smoothing filter), Linear Predict, Predict-UFIR (UFIR predic-

tive filter), and Filter-UFIR (UFIR filter), and (b) segmental visualization of five estimates.

signal-to-noise rations (SNRs) at the filters outputs will be provided next.

3.2.2 Effect of SNR on the estimator MSE

The root MSEs (RMSEs) are shown in Fig. 3.7 as functions of the SNR depicted in decibels (dB)

at 18 discrete points with a step of 5dB. It follows that the UFIR smoothing filter outperforms

other solutions in a wide range of SNR values. For 0 6 SNR < 15 dB, higher accuracy is achieved

with a constant N and, for SNR > 15 dB, with an adaptive N .
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Figure 3.6: Errors produced by different estimators: (a) in the T-wave, (b) error boxplot in the

T-wave, (c) in the QRS-complex, (d) error boxplot in the QRS-complex, (e) in the P-wave, and

(f) error boxplot in the P-wave. Estimator 1 is Smooth UFIR, estimator 2 is ASmooth-UFIR,

estimator 3 is the predict linear, estimator 4 is the Predict-UFIR and finally, estimator 5 is the

Filter-UFIR

3.3 Applications to ECG signals

Based upon the above developed UFIR-based approach, we now apply Algorithm 3 to the ECG

signal database and extract special features depicted in Fig. 3.1. The results obtained using

the designed UFIR smoothing Algorithm 2 (UfirSmooth), UFIR predictive algorithm (Predictor
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Figure 3.7: RMSEs of UFIR denoising estimators and linear predictor (Linear-Predict) as func-

tions of SNR

Ufir), and basic linear predictor (Linear Predict) [1] are sketched in Fig. 3.8 and Fig. 3.9. In

these figures, 100 synthetic heartbeats are processed at each time index. This synthetic ECG

signal is contaminated by AWGN at 35 dB with properties similar to the original data.

In Fig. 3.10, we show dispersions and concentrations of the estimated features about their

means. Shadowed areas represent features extracted by smoothing and it follows that the outputs

of the filter and linear predictor are more vulnerable. Furthermore, noise dominates in the predic-

tive filters outputs. This experiment was based on healthy records of MIT-Arrhythmia database

(lead MLII) analysing 1000 heartbeats. Overall, the UFIR smoothing approach developed in this

work always produced better estimates than by other linear methods considered.

3.3.1 APC heartbeats UFIR smoothing and P-wave features Analysis using

Rice Distribution

Heart diseases are one of most frequent causes of death in the modern world. Therefore, the

ECG signal features have been under peer review for decades to improve medical diagnostics. In

this work, we provide smoothing of the atrial premature complex (APC) of the electrocardiogram

(ECG) signal using unbiased finite impulse response (UFIR) smoothing filtering. We investigate
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Figure 3.8: Features of the ECG signal extracted using the UFIR smoothing filter (Smooth-

UFIR), basic linear predictor (Linear Predict) [1], and UFIR predictive filter (Predict UFIR): (a)

Pamp, (b) QRSe, and (c) Tamp.

the P-wave distribution using the Rice law and determine the probabilistic confidence interval

based on a database associated with normal heartbeats. It is shown that the abnormality in the

APC is related to the P-wave morphology. Different filtering techniques employing predictive and

smoothing filtering are applied to APC data and compared experimentally. It is demonstrated

that the UFIR smoothing filter has better performance than the others ones. We finally show

that the P-wave confidence interval defined for the Rice distribution can be used to provide an

automatic diagnosis with a given probability.
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Figure 3.9: Features of the ECG signal extracted using the UFIR smoothing filter (ASmooth-

UFIR), basic linear predictor (Linear Predict) [1], and UFIR predictive filter (Predict Ufir): (a)

Pdur, (b) QRSdur, (c) Tdur, and (d) STangle θ̂. The durations are sampled with 0.0028 seconds.

Also ST-angle is referenced with 45 grades
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Figure 3.10: Boxplot of features of the ECG signal extracted using the UFIR adaptive smoothing

filter (Estimator 1: ASmooth-UFIR), UFIR predictive filter (Estimator 2: Predict Ufir), basic

linear predictor (Estimator 3: Linear Predict), UFIR filter (Estimator 4: Filter-UFIR): (a) Pamp,
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3.3.2 P-Wave detection algorithm

A pseudo code of the algorithm designed for the ECG signal features extraction is shown as

Algorithm 3.3.2. Here, ssi is the smoothed ECG signal; Nb is the number of heartbeats; Baseline
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is a variable, which represents the reference line; fs is the data sample frequency; and Interval

is a value, which determines the window width to cover Q and S points. The algorithm output

consists of estimates of the ECG signal features such as P̂ of P, Pamp of the P amplitude, Pdur of

the P duration. All these features are extracted from the smoothed signal.

Algorithm 5 A pseudo code of the algorithm to extract morphological features of P-wave

Data: ssi , Nb, Baseline, fs, Interval

Result: P̂, Pamp, Pdur.

1: Begin :

2: for i = 1 to Nb do

3: ssi= beatss(i)

4:

[

R̂,Rp

]

=max(ssi)

5: [Q′ S′] =IntervalQRS(si, Interval)

6:

[

Q̂,Qp

]

=min(ssi(Q
′ : Rp))

7:

[

Ŝ, Sp

]

=min(ssi(Rp : S′))

8: ssnew=suppress(ssi(Q
′ : S′))

9:

[

P̂,Pp

]

=max(ssnew(1 : Q′))

10: P1=ssi(1 : Pp)

11: P2=ssi(Pp : Q′)

12:

[

Ponset,P
on
p

]

= max(diff(P1))

13:

[

Poffset,P
off
p

]

=min(diff(P2))

14: Baseline(1:length(ssi)) = Poffset(i)

15: Pamp(i)=P̂−Baseline(i)

16: Pdur(i)=(Poff
p − Pon

p )/fs

17: end for

The algorithm begins with computing R̂ as the ECG signal maximum, using function max.

Function IntervalQRS is applied to compute Q′ and S′. The Interval variable determines the

window width to cover the QRS complex and obtain Q̂ and Ŝ as two minima between Q′ and

S′. Function min is used to find the above-mentioned points. The supress function is used to

suppress the QRS complex. Function max is used to estimate P. Function diff is introduced to

compute the derivatives in the P1, P2 intervals. Functions max and min with diff are used to

find Ponset, P
on
p , Poffset, and Poff

p . Provided these values, the duration is estimated of P features.

Function length is introduced to compute the signal length. The Baseline variable determines
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the reference line for computing the amplitude features. This variable is equal to Poffset. As can

see in the Fig. 3.11, the estimates provided by the UFIR smoothing filter are more consistent to

the average P-wave than by other techniques.
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Figure 3.11: Applications of different filters to extract the ECG amplitude features (a) Amplitud

of P-wave and (b) duration of P-wave. Here Smooth-UFIR is the UFIR smoothing filter, Predict

UFIR is the linear predictor and Predict-UFIR is the UFIR predictive filter

3.3.3 Validation of P-Wave feature estimates

Because the positive-valued P-values vary for normal and abnormal heartbeats in a wide range,

it is required to specify the confidence interval for the P-wave estimate to be valid with a given

probability. We do it by using the Rice probability density function (pdf), which corresponds to

the envelop of a harmonic signal in Gaussian noise [96, 97],

p(r) =
r

σ2
exp

(

−
r2 +A

2σ2

)

I0

(

Ar

σ2

)

, (3.22)
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Figure 3.12: Normalized histograms and Rice-based approximations for P-wave features of healthy

heartbeats.

where σ2 is the variance of the acting noise, A is the harmonic signal amplitude, and I0(x) is the

modified Bessel function of the first kind and zeroth order. The normalized Rice pdf is given by

p(v) = v exp

(

−
v2 + a2

2

)

I0(Av) , (3.23)

where v = r
σ
and a = A

σ
. Note that (3.23) reduces to the Rayleigh distribution [98] when a = 0

and, by large a, it becomes Gaussian.

3.3.4 Confidence interval for P-Wave

To specify the confidence interval for the P-wave estimates provided by Algorithm 3.3.2, we have

investigated the P-wave histograms for normal and abnormal heartbeats taken from different

persons as shown in Fig. 3.3.4.

We employed a register of different ages between female and male gender with 9159 healthy

and 2540 APC beats. The name of the signal is referenced based on the Arrhythmia database.

In this case the records used are [101, 105, 220, 231, 100, 116, 202, 117, 223]. Other registers

were also processed, but we select only those records, which are most close to the reference signal.

The number of bins varies for each histogram between 500 and 1000. Also, we consider more
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Figure 3.13: Confidence intervals for APC (sold) and healthy (dashed) ECG heartbeats.

representative features, because the ECG record has a considerable variability. Values v and a

for the Rice pdf were chosen in the minimum MSE sense.

Confidence Interval for Normal Heartbeats

As can seen in the Fig. 3.3.4, the confidence interval (CI) for the APC heartbeats has two

boundaries 0.009 and 0.125 with the probability of 76.33%. For healthy beats, the boundaries

were found to be 0.1403 and 0.3074.

3.4 Discussion

The purpose of this study is denoising the attached noise in ECG signals using a UFIR smooth-

ing filter for features extraction. This work is focused in the morphological features extraction

individual ECG signal processing with normal rhythm. A principal findings in the applying the

proposed method is the considerably reduction of noise with an optimum and adaptive horizon

for real ECG data. This reduction contributes a determine with better precision the features

associated to the heartbeat.
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From analysis of errors variability in real ECG signals and SNRs based on ECG synthetic

data in different estimators has shown that the UFIR smoothing filter with adaptive horizon

outperforms the linear predictor between 0 and 50 of SNR with RMSE not more than 0.5 [1,

30–32] and other UFIR solutions such as the UFIR filter and UFIR predictive filter on MIT-

BIH arrhythmia dataset. Let us notice again that the approaches based on linear prediction

were recognized as standard for the ECG signal features extraction [32]. In this regard, better

performance of the smoothing algorithm developed in this work opens new horizons in achieving

higher accuracy and reliability in detecting different kinds of heart diseases.

The UFIR smoothing filter performance was optimized by making the averaging horizon adap-

tive. Note that such an opportunity has not been used in the design of known linear predictors

for ECG data. As a results, we have achieved the following improvements:

1. Suboptimal denoising of ECG signals with no requirements to noise, except for the zero

mean assumption.

2. Unbiased filtering in the QRS region, in which the ECG signal demonstrates rapid excur-

sions.

Such abilities of the UFIR smoothing filter have resulted in higher estimation accuracy, namely

in smaller variability of the estimated features around their mean values. In this regard, let us

notice that larger variability in the standard linear predictor is due to larger errors and instabil-

ity caused by unknown future data and errors in the determination of the predictor coefficients

determined by the correlation method. Accordingly, errors in the determination of the prediction

function lead to larger prediction errors (random and regular). This has appeared to be particu-

larly true for the Pamp and Tamp values, which are estimated by other methods with much larger

errors. Estimates of QRSe and QRSdur by different methods have appeared to be consistent,

because these values are not affected by noise as much as other features. Nevertheless, the UFIR

smoothing has demonstrated smaller errors even for QRSamp. In the cases of both Tdur and angle

θ, one watches for highly unstable estimates provided by the prediction-based filters, while the

proposed UFIR smoothing filter has produced acceptable estimates. Also, it is important clarify

that the evaluation of features are analysed from the consistence of data near of average of the

measurement. However, in this scenario, the quality features is no strictly analysed because the

ECG signal used is just under normal conditions. We consider that estimate given by the UFIR

approach is satisfactory but it is not enough in the sense to extract better features. Because we
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have employed a external function that provides the derivative of the estimation with attached

noise and reduced length. This is a limitation to determine with precision the features. Hence,

in the following chapter, we propose a UFIR smoothing in the state-space.



Chapter 4

Denoising and Features Extraction of

ECG signals in State Space Using

Unbiased FIR Smoothing

Referring to the first results obtained in [3, 92], where the batch UFIR smoothing filter has

demonstrated a better performance than several other well-recognized estimators, in this chapter

we have employed and developed an iterative UFIR smoother in state space. The principal

objective is to increase accuracy of the features extraction and fiducial points detection.

The main contributions of this work are the following:

• An optimal q-lag state-space UFIR smoothing algorithm for ECG signals denoising and

artifacts removal.

• An algorithm for ECG signal stable temporal features extraction using different classifiers

under unknown noise.

• High-accuracy patterns classification for ECG signals with atrial fibrillation (AF) and nor-

mal conditions.

To reach the goal, we first provide denoising of ECG signals and compare the results obtained

by the wavelet-based and some standard filters. We then extract features of the ECG-waves

and analyse confidence intervals for particular ECG records. The results are tested by different

classifiers and compared to those available from several machine learning techniques. The rest

of the chapter is organized as follows. Section 5.1.1 presents the discrete-time state-space UFIR

47
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filtering and smoothing approaches. In Section ??, we design an adaptive UFIR smoothing

algorithm for ECG signal features extraction. Specifics of the UFIR smoother optimal tuning

and testing are given in Section ??. Assessment of adaptive UFIR smoothing algorithm for ECG

signals to ECG signals are given in Section 4.4. Applications for T-wave Features Analysis are

given in Section ??

Discussion of the results is provided in Section 4.5.
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Figure 4.1: Fiducial points of heartbeat
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4.1 ECG signal model in discrete-time state-space

To provide efficient denoising and features extractions, in this subsection we model an ECG signal

upon fiducial points (see Fig. 4.1) in discrete-time state-space. We represent an ECG signal on

a horizon [m,n] of N points, from m = n−N + 1 to n, where n is the discrete time index, with

a degree polynomial as shown in [3]. The inherent ECG noise is still not well understood and

its incorrect description may cause estimation errors. Therefore, we suppose that the underlying

process in each ECG pulse is time-invariant and deterministic. We also suppose that scalar

measurements of the ECG signal are provided in the presence of zero mean noise having an

unknown distribution (not obligatorily Gaussian) and covariance.

Under such assumptions, we represent an ECG signal in discrete-time state-space with the

following state and observation equations, respectively,

xn = Fxn−1 , (4.1)

yn = Hxn + vn , (4.2)

where xn ∈ R
K is the ECG process state vector, yn is the scalar observation, vn is the scalar

measurement noise, F ∈ R
K×K is the system matrix projecting the initial state xn−1 to xn and

given by [99]

F =























1 τ τ2

2 . . . τK−1

(K−1)!

0 1 τ . . . τK−2

(K−2)!

0 0 1 . . . τK−3

(K−3)!
...

...
...

. . .
...

0 0 0 . . . 1























. (4.3)

For a scalar measurement, we assign the observation matrix as H = [ 1 0 · · · 0 ] ∈ R
1×K and

suppose that noise vn is zero mean with unknown distribution and other statistics. The batch

UFIR filter can now be applied to (4.1) and (4.2) to provide state estimates as in the following.

4.1.1 UFIR filtering and smoothing of ECG signals

Provided modeling of an ECG signal in discrete-time state space, in this section we discuss

the UFIR filter and smoother first in the batch form and then in a fast iterative form using

recursions. Because the optimal averaging horizon is shape-varying for ECG signals, we also

discuss its adaptive structure.
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4.1.2 Batch UFIR filter and smoother

On a horizon [m,n] of N ECG data points, the batch UFIR filtering estimate xn , x̂n|n of xn is

given by [72]

x̂n = (WT
m,nWm,n)

−1WT
m,nYm,n , (4.4)

where the extended observation vector (This model is described in Appendix B) Ym,n and aug-

mented measurement matrix Wm,n are, respectively,

Ym,n = [ yTm yTm+1 . . . y
T
n ]T , (4.5)

Wm,n =

















H(Fn−m)−1

...

HF−1

H

















. (4.6)

In the discrete convolution-based form, estimate (5.4) can be represented as

x̂n = Hm,nYm,n , (4.7)

where the UFIR filter gain matrix Hm,n given by

Hm,n = (WT
m,nWm,n)

−1WT
m,n (4.8)

can be rewritten as

Hm,n = GnW
T
m,n , (4.9)

where Gn is the generalized noise power gain (GNPG),

Gn = Hm,nH
T
m,n = (WT

m,nWm,n)
−1 . (4.10)

Given the UFIR filtering estimate x̂n , x̂n|n of xn by (4.7), the q-lag UFIR smoothing

estimate can be obtained by projecting x̂n into x̂n−q as shown in [69],

x̂n−q|n = F−qx̂n|n , (4.11)

where qopt =
⌊

N
2

⌋

is a digital optimal lag for odd-degree UFIR smoothers and qopt must be set

individually following Fig. 8 in [69] for each even-degree. Let us notice again that the Savitsky-

Golay solution ignores this specific and suggests taking lags from the middle points of [m,n] for

all degrees that introduces errors.
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4.1.3 Adapted optimal horizon Napt

Of importance is that the UFIR filter is able to minimize the MSE on [m,n], if the horizon N

is set optimally as Nopt [93]. To make it possible in the absence of the reference signal (ground

truth), we follow [93] and find Nopt for ECG signals by minimizing the trace of the derivative of

the mean square value (MSV) of the measurement residual matrix V(N) as

N̂opt = argmin
N

∂ trV(N)

∂N
+ 1 . (4.12)

A solution to the optimization problem (5.12) has been provided in our early paper together with

an algorithm [3], which we will employ further. It has been found out in [3] that an optimal

horizon Nopt = 21 serves for the 2-degree polynomial corresponding to three states, K = 3, and

database [76] exploited in this paper.

An important specific is that Nopt varies on different parts of the ECG signals [92]. Therefore,

we will make Nopt adaptive (Napt) to range from Nmin = K = 3 to Nopt as

Nmin 6 Napt 6 Nopt ,

where Nmin is a minimum horizon applied to a fast excursion between Qp and Sp (Fig. 4.1). To

this end, we recognize five parts in the ECG signal separated with the following points in Fig.

4.2: Qint, Qp, Sp, and Sint. Up to Qint, a smooth part of the ECG signal is processed with Nopt.

Between Qint and Qp, the horizon Napt linearly reduces from Nopt to Nmin. The QRS complex,

between Qp and Sp, is processed with Nmin to follow exactly a fast excursion around Rp. From

Sp to Sint, the horizon Napt linearly increases from Nmin to Nopt, The horizon finally becomes

Nopt above Sint. Accordingly, adaptive UFIR smoothing is provided as

x̂n−q|n =











































x̂n−q|n(Nopt) , 1 6 n 6 Qint − 1 ,

x̂n−q|n(Napt) , Qint 6 n 6 Qp − 1 ,

x̂n−q|n(Nmin) , Qp 6 n 6 Sp ,

x̂n−q|n(Napt) , Sp + 1 6 n 6 Sint ,

x̂n−q|n(Nopt) , Sint + 1 6 n 6 T ,

(4.13)

where T represents the heartbeat length. Provided Napt, we can next design an iterative UFIR

smoothing algorithm using recursions, which reduces the computational load.

4.1.4 Iterative UFIR smoothing

Like the Kalman filter (KF), iterative computation of the batch UFIR estimate (5.7) is provided

recursively in two phases: predict and update [72]. In contrast to the KF, the UFIR algorithm
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does it with no requirements for the noise statistics and initial values and is thus more suitable

for ECG signals in view of generally unknown heartbeat noise.

At the predict phase, the UFIR algorithm computes the prior state estimate x̂−
n = Fx̂n−1

and ignores the prior error covariance, unlike the KF. At the update phase, the UFIR algorithm

updates the GNPG Gn as Gn = [HTH + (FGn−1F
T )−1]−1, the measurement residual zn =

yn − Hx̂−
n , the bias correction gain Kn = GnH

T , and the state estimate x̂n = x̂−
n + Knzn. A

pseudo code of the UFIR smoothing algorithm [72] adapted to ECG signals is listed as Algorithm

1.

Algorithm 6 Adaptive Iterative UFIR Smoothing Algorithm for ECG Signals

Data: yn, N = Napt, q = qopt

Result: x̂

1: Begin :

2: for n = N − 1, N, ... do

3: m = n−N + 1, s = n−N +K

4: Gs = (WT
m,sWm,s)

−1

5: x̃s= GsW
T
m,sYm,s

6: for l = s+ 1 to n do

7: x̃−
l =Fx̃l−1

8: Gl = [HTH+ (FGl−1F
T )−1]−1

9: Kl = GlH
T

10: x̃l = x̃−
l + Kl(yl −Hx̃−

l )

11: end for

12: x̂n=x̃n

13: x̂n−q=F−qx̂n

14: end for

Provided ECG data yn, adaptive horizon Napt, and optimal lag qopt for a chosen filter degree,

Algorithm 1 starts self-computing the initial GNPGGs and initial state x̃s at s, which corresponds

to a short initial horizon of K points. This is required to overcome singularities in the UFIR filter

gain on shorter horizons. Estimate x̂n at time index n is computed iteratively, using an auxiliary

time variable l, which starts with l = n−Napt+K +1 and finishes when l = n. The estimate x̂n

obtained in such a way minimizes the MSE and is called the optimal UFIR estimate. Provided
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x̂n, the UFIR smoothing estimate with a lag q is obtained by a projection from n to n− q as [72]

x̂n−q = F−qx̂n (4.14)

and we notice again that lag q must be set optimally as qopt to reach minimum possible smoothing

errors.

4.2 ECG signal features extraction in state space

Features extraction from ECG signals in state space using Algorithm 4.1.4 is provided in five

stages (Fig. 4.2): 1) detrending, 2) QRS-complex detection, 3) segmentation, 4) adaptive iterative

UFIR smoothing, and 5) windowing of ECG waves.

QRS complex detection Segmentation UFIR smoothing
Windowing of

ECG waves

Fiducial
Detection

Features Extraction

DetrendECG
Record

Figure 4.2: Block-diagram of features extraction of the ECG signal in state space using an UFIR

smoother.

Detrending

At this state, Algorithm 4.1.4 is applied on a large horizon N � Nopt to remove artifacts from

the external systems.

QRS-complex detection

The QRS-complex is detected using annotations of the arrhythmia MIT-BIH database following

the approach proposed by Tompkins and Pan et. al. [94]. Note that a majority of annotations

detect the QRS complex with a probability of 99.3%.

Segmentation

Localized the QRS-complex, a closest point to the R-peak is detected in each heartbeat. Next,

by taking 100 samples to the left and 200 samples to the right, a window is created to outline
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a heartbeat as in Fig. 4.1. If this window does not cover all points of interest (P-wave, QRS-

complex, and T wave), its width is increased. The segmentation process is organized heuristically

with the aim of analysing the morphological waves. We refer to this technique described in

[100–102].

Iterative UFIR smoothing

Specified Nopt and Napt for the database used as shown in [3], the horizon Nopt = 21 is applied

beyond the QRS complex. To avoid large bias errors, Napt specified by (4.13) is applied over all

EGC signal. Provided UFIR filtering, smoothing with a lag q is organized using (4.14).

Windowing of ECG waves

The UFIR smoother provides denoising and estimation of the ECG signal three states as shown

in Fig. 4.3 for the first state (de-noised ECG signal), second state (time derivative of the de-

noised signal), and third state (second time derivative of the de-noised signal). Using information

about the ECG signal states, the R-peak, QRSmax, and QRSmin are determined and a window

is applied to cover the QRS complex. The P-waves detection is provided beginning from Q until

the heartbeat ends. Here, a window is applied to cover Pon , P-peak, Poff points, which are

determined by Pmax and Pmin in the second state. Similarly, the T-wave is detected, in which

case Ton and Toff are covered by a window created for Tmax and Tmin (Fig. 4.3b).

4.2.1 Fiducial points detection and features extraction

In this section, we use the above results to provide fiducial points detection and features ex-

traction, such as the durations and amplitudes of different detected fiducial points. Provided

windowing of the P-wave, QRS-complex, and T-wave, we use the fiducial point Pon as an initial

point of P-wave, P as a P-peak, Poff as a final point of P-wave, Q as an initial point of QRS

complex, R as a R-peak, S as a final point of QRS complex, Ton as a initial point of T-wave, T

as T-peak, and Toff as a final of T-wave. The fiducial points are extracted as follows.

QRS-complex

The fiducial points for a QRS-complex are determined by finding a maximum QRSmax and a

minimum QRSmin in the second state (Fig. 4.3b), which are corroborated by the third state at

zero cross points (Fig. 4.3c). Two variables “dqrs1” and “dqrs2” are introduced to calculate the
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initial and final points of a QRS-compex. The R-peak is detected as R̂ at a zero cross point of

the second state and is corroborated by QRSmin of the third state.

P and T waves

The fiducial points for P and T waves are determined by finding Pmax, Tmax, Pmin, and Tmin

in the second state (Fig. 4.3b), which are corroborated by the third state at zero cross points

(Fig. 4.3c). Two variables “dp1” and “dp2” are introduced to calculate the initial and final

points of the P-wave. Similarly, two variables “dt1” and “dt2” are introduced for the T-wave.

The P-peak and T-peak assigned as P̂ and T̂, respectively, are detected at the zeros cross of the

second state. These points are confirmed by Pmin and Tmin in Fig. 4.3.

Provided the fiducial points P̂on
p , P̂, P̂off

p , Q̂, R̂, T̂on
p , T̂, T̂off

p to represent the relevant points1

in Fig. 4.1, the ECG wave durations and amplitudes are calculated for the P-wave as

Pdur = Poff
p − Pon

p
∼= P̂off

p − SP̂on
p , (4.15)

Pamp = S(Pp)− S(Pon
p ) ∼= P̂− S(P̂on

p ) , (4.16)

for the QRS-complex as

QRSdur = Sp −Qp
∼= Ŝp − Q̂p , (4.17)

QRSamp = R− S(Qp) ∼= R̂− S(Q̂p) , (4.18)

and for the T-wave by

Tdur = Toff
p − Ton

p
∼= T̂off

p − T̂on
p , (4.19)

Tamp = S(Tp)− S(Ton
p ) ∼= T̂− S(T̂on

p ) . (4.20)

Note that estimates P̂on
p , P̂off

p , S(Q̂p), T̂
on
p , and T̂off

p represent points, which belong to the base

line of an ECG signal.

4.3 Tuning and Testing

In order to achieve the best smoothing effect, in this section we tune the UFIR smoother to the

ECG signals in terms of optimal lags related to optimal horizons. As benchmarks, we will employ

the wavelet-based, low-pass, high-pass, median, and notch filters employed in [21, 22, 32, 43, 63,

103].

1The points Pp, Qp, Rp, Sp and Tp are time indexes that determine the peaks P-peak, Q-point, R-peak, S-point

and T-peak in the heartbeat.
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Figure 4.3: Fiducial features of a single heartbeat extracted along with the spacial points in state

space using the UFIR approach: (a) first state, (b) second state, and (c) third state.

4.3.1 Optimal lag for UFIR smoother

It has been shown in [69] that an optimal lag qopt for odd-order polynomial UFIR smoothers

must be taken from the middle of an optimal averaging horizon of Nopt points. Accordingly, we

specify qopt as

qopt =

⌊

Nopt − 1

2

⌋

, (4.21)

where bxc means the floor of x, i.e. the largest integer less than or equal to x.

For even-order polynomials, [69] suggests that qopt must be set individually. Specifically, the
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minimum optimal lag for the second-order UFIR smoother is [69]

qopt =
Nopt − 1

2
−

1

2

√

N2
opt + 1

5
. (4.22)

In this regard, let us notice that even though the Savitsky-Golay smoother [33] was derived

from different prospectives, it has a similar structure with the UFIR smoother and similar proper-

ties such as adaptability to signal variations and robustness to noise. An advantage of the UFIR

approach is that it suggests optimal lag for each smoother degree [69] that was not provided by

Savitsky and Golay.

4.3.2 Testing iterative UFIR algorithm

The three-state polynomial model was shown in [3] to be near optimal for ECG signals. Referring

to [3], we represent the system and measurement matrices as, respectively,

F =











1 τ τ2

2

0 1 τ

0 0 1











, H = [ 1 0 0 ] , (4.23)

where a discrete time-step τ = 1/f is due to the sampling frequency of f = 360Hz used in

DataBase MIT-BIH Arrhythmia. For (4.23), the augmented measurement matrix becomes

Wm,n =











HF−2

HF−1

H











. (4.24)

At these stage, we compare performances of the UFIR smoother relying on qopt (4.21) and

(4.21) and several other available filters. To test estimators, we generate a signal s(n) = sin(n)

corrupted by an additive zero mean white Gaussian noise (WGN) having the variance σ2 = 0.0625

and sketch the results in Fig. 4.4. As can be seen, the UFIR smoother with qopt (4.22) is most

successful in accuracy, since its estimate ranges most close to the generated signal.

The root mean square errors (RMSEs) corresponding to Fig. 4.4 and computed over 1000

iterations and are shown in Fig. 4.5. One observes that all wavelet-based and standard filters

produce much larger errors than the UFIR smoothers irrespective of the wavelet chosen. Among

the two UFIR smoothers used, the second one performs better due to the optimal lag (4.22). This

simulation confirms the fact that the lag must be chosen optimally for all even-order smoothers,

unlike for the Savitsky-Golay filter.
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bandpass

Figure 4.4: Denoising of a test sinusoid signal (solid) corrupted by zero mean AWGN using the

UFIR smoother (dotted with asterisk) with lag q1 (4.21) and (dash-dotted and marked square)

with lag q2 (4.22). The Daubechies wavelet-based smoothers are: db6 (dashed with marked

circle), db14 (dash with dot marked), sym4 (solid with marked cross), bior2.2 (dashed with

marked plus sing), coif2 (solid with marked diamond). The standard filters are: band pass filter

(bandpass, dashed with marked pentagon), low pass filter low-pass (solid with marked hexagon),

median (medfilt, dotted with marked point), and notch (notchfil, dashed with marked point).

We next provide an analysis of the signal-to-noise ratios (SNRs) at the filter outputs in terms

of the percentage root mean square (PRD). In doing so, a synthetic ECG signal is considered

with known ECG signal and noise. The pass-band filter is set aside due to the instability (Fig

4.5). As can be seen in Fig. 4.6, both UFIR smoothers (q-lag1 and q-lg2) are most successful in

accuracy for small and large SNR values. The notch filter produce considerable errors when the

SNR drops below 10 dB. The wavelet-based smoothers perform well when the SNR exceed 20 dB

and the low-pass filter performs similarly. It is also seen that the median filter is less accurate
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Part A Part B

Figure 4.5: RMSEs corresponding to Fig. 4.4 and computed over 1000 iterations for the UFIR

smoother, wavelet-based, and standard filters such as the low-pass, band-pass, median, and notch.

among other solutions when the SNR exceeds 20 dB.

Another experiment has been conducted to analyse the error variability with respect to the

signal energy. The results are sketched in Fig. 5.9 in terms of the PRD. Again we notice that

both UFIR smoothers produce smallest errors among other solutions.
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Figure 4.6: RMSEs of the UFIR smoother compared to the wavelets-based and standard filters.

4.4 Assessment of adaptive UFIR smoothing algorithm for ECG

signals

In this section, we make efforts to extract features of ECG signals with a highest available

accuracy provided by the adaptive UFIR smoothing algorithm designed based on the MIT-BIH

Arrhythmia benchmark [76], which contains several records taken from different databases such

as the MIT-BIH Arrhythmia (MITDB). The wavelet-based filters with several mother wavelets

will be used as benchmarks.
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Figure 4.7: Smoothing errors in terms of PRD produced by diverse filters.

4.4.1 Filtering and artifact removal

What we expect from the estimates of the first state is that the outputs of the UFIR smoother with

lags (4.21) and (4.22) and the outputs of the wavelet-based filters will not get away significantly

from one another. Herewith, we suppose that errors in the estimates of the second and third

states provided by the Savitsky-Golay smoother and wavelet-based filters will range higher than

in the UFIR smoother, because the former estimates the high-order states via the derivatives,

while the later makes it in state space concurrently. Our expectations are confirmed in Fig. ??,

where we also highlight a part with clearly seen bias errors when an ECG signal changes rapidly

within the QRS-complex.

To sketch a more clear error picture, in Fig. 4.9 we give the measurement residuals produced

by different estimators. What follows from this figure is that the UFIR smoother outperforms

the wavelet-based and standard filters over all data, especially within the QRS complex. In Fig.

4.10, we give estimates of the second state provided by the estimators within and beyond the
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Figure 4.8: ECG signal denoising: (a) heartbeat estimation with the UFIR smother, wavelet-

based filters, and standard filters; (b) segmental visualization of ten estimates.
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Figure 4.9: Measurement residuals produced by the UFIR smoother (q-lag1 and q-lag2), wavelet-

based filters (db6, db14, sym4, bior2.2, and coif2), low-pass filter, median filter, and notch filter:

(a) actual residuals and (b) error boxplot of heartbeat.

QRS-complex. This figure also confirms that the UFIR smoother is most accurate among other

solutions. An important specific is that the UFIR smoother is able to remove efficiently artifacts

as shown in Fig. 4.11. This property is useful to detrend the process, such as that shown in Fig.

4.1.

4.4.2 Computational complexity

Although the computation time is not strictly limited in ECG signals processing, an issue may

arise when the consumed time is unacceptably large for medical needs. To find out how fast each

algorithm operates under the same conditions, we next process an ECG record of 30 seconds with

1000 iterations. We base the computation time measurement on the MATLAB R2019 operating

on a computer with intel core i7-4510U CPU (2.60) GHz and 16.0 GB RAM. The consumed times

are listed in Table 4.1 and it is seen that an increase in the accuracy in the UFIR smoother is

achieved at expense of the computation time, which is largest among other solutions, because the
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UFIR algorithm 4.1.4 has the O(N) complexity [72]. Even so, the time consumed by the UFIR

smoother can be acceptable for medical needs, provided that the results demonstrate highest

accuracy. Note that the UFIR algorithm still was not optimized in terms of fast operation and

the computation time can be significantly reduced in special implementations.

Table 4.1: Computation Time Required by Diverse Algorithms

Algorithm Average time (sec) Parameter

UFIR q-lag 1 6.81 N=21

UFIR q-lag 2 5.48 N=21

db6 0.1610 level=3

db14 0.1521 level=3

sym4 0.1424 level=3

bior 2.2 0.1379 level=3

Coif2 0.1331 level=3

lowpass 0.3556 30Hz

medfilt 0.0029 –

notchfil 0.0015 60Hz

4.4.3 Features extraction and errors comparison

Provided estimates of the ECG signal states, we next conduct accurate features extraction follow-

ing the above discusses scheme, in which relations (4.19) and (4.20) are used to extract features of

the P-wave, (4.21) and (4.22) to compute the QRS-complex duration and amplitude, and (4.23)

and (4.24) to extract features of the T-wave.

An extraction of the P-wave duration using the UFIR smoother is illustrated in Fig.4.12,

where we also sketch estimates provided by some wavelet-based filters. The estimates are given

along with the expert annotations (gold standard) taken from [2, 100, 104] and shown as the

upper and lower boundaries corresponding to the confidence interval of the probability of 95%.

Several features extracted using the UFIR smoother and other algorithms are generalized

in Fig. 4.13. Again we see that the UFIR smoother provides estimates consistent with the

gold standard, while the wavelet-based and standard filters are not always successful and their

estimates undergo hight variabilities leading to inconsistent outputs. A more deep investigation

respect to the P-wave will be provided next for normal and abnormal ECG signals.
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4.4.4 Applications to normal and abnormal ECGs

As an example of applications, we now extract features of the P-wave related to records with

normal rhythm and atrial fibrillation and illustrate the results obtained using the wavelet filter

with Db6 (Fig. 4.14) and UFIR smoother (Fig. 4.15). The following observations follow from

an analysis of these figures:

• The UFIR smoother puts the extracted features within the confidence interval that allows

getting a strong discrimination between the normal and abnormal records as will be shown

latter.

• All other algorithms produce unstable estimates (Fig. 13), which range out of the gold stan-

dard boundaries. Thus, making a good determination between the normal and abnormal

records is more problematic by these filters.

4.4.5 Classification

We now evaluate features provided by (4.15), (4.16), (4.17), (4.18), (4.19) and (4.20) using nine

classifiers. Considering 29266 heartbeats including healthy and abnormal heartbeats, we first

train the classifiers by the cross-validation process 10 considering records 100, 103, 105, 201, 203,

210 from arrhythmia MITDB. Next, the classifiers are tested by new data 106, 112,113, 219, 221

taken from arrhythmia MITDB. All data are divided into several balanced sets to avoid biases

produced by imbalanced data (a specific class set is larger than other). The metrics used for

performance assessment are accuracy (Acc.), specificity (Spec.), and sensitivity (Sens.),

Acc =
TP + TN

TP + TN+ FP + FN
, (4.25)

Spec =
TN

TP + FN
, (4.26)

Sens =
TP

TN+ FP
, (4.27)

where, TP (true positives) means that healthy heartbeats are correctly classified, TN (true neg-

atives) means that abnormal heartbeats are correctly classified, FN (false negatives) means that

healthy heartbeats are classified as abnormal heartbeats, and FP (false positives) means that

abnormal heartbeats are classified as healthy heartbeats.

By these metrics, the performance of each classifier turns out to be averaged that is seen in

Table 4.2 representing the general classifier performance provided by the tree model (complex tree,
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medium tree, and simple tree), logistic regression, ensemble model (bagged tree, support vector

machine (SVM) (linear, quadratic, and cubic), and subspace k-nearest neighbour (KNN). Note

Table 4.2: Performance of the AF for Normal ECG Heartbeats Based on Different Classifiers

Classifier Acc. Spec. Sens.

Complex Tree 0.9664 0.9710 0.9964

Medium Tree 0.9664 0.9710 0.9964

Simple Tree 0.9664 0.9614 0.9952

Logistic Regression 0.9160 0.9814 0.9611

Bagged Tree 0.9934 0.9996 0.9855

Linear SVM 0.9275 0.9889 0.8827

Quadratic SVM 0.8331 0.9889 0.7604

Cubic SVM 0.8072 0.8949 0.7887

Subspace KNN 0.8072 0.9823 0.5988

that the best classifiers were selected during the initial training. A similar process was organized

by applying the principal component analysis (PCA) (See Table 4.3) and comparing the effects.

It follows from both cases that the UFIR smoothing approach provides a considerably better

performances that follows from Table 4.4, where a comparison is provided using the empirical

mode decomposition (EMD), autoregressive model (AR), Hadamard transform (HT), wavelet

transform (WT), and convolutional neural networks (CNN).

Features extraction in T-wave

The T-wave features extraction begins with the suppressing of the P-wave and QRS complex.

This part of signal is detect by analysing some zeros cross before to the T-wave. Detected the

P-wave and QRS complex, a new signal from ECG signal estimate depicts just the T-wave (See

fig.4.3).

Applying the iterative UFIR filtering with K states (K = 3 in our case),here, three signals

represents the estimation(First state fig. 5.5a), first derivative(Second state fig. 5.5b) and second

derivative(Third state 5.5c) of T-wave.

Different features of the T-wave can be extracted from these estimates. Points Ton and Toff are

obtained via the peak values, Tmax and Tmin. Similarly, features as amplitude and duration of

the T-wave are calculated in this stage. The duration is the diference between Toff and Ton and
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Table 4.3: Performance of the AF and Normal ECG Signals Applying PCA and Based on Different

Classifiers: FG SVM is the Fine Gaussian SVM, CG SVM is the Coarse Gaussian SVM

Classifier Acc. Spec. Sens.

Complex Tree 0.7144 0.7973 0.6221

Medium Tree 0.6942 0.7201 0.6655

Simple Tree 0.6757 0.5575 0.8073

Logistic Regression 0.8410 0.7514 0.9043

Linear SVM 0.8244 0.7527 0.7441

Quadratic SVM 0.8272 0.9019 0.4940

FG SVM 0.7804 0.8526 0.7848

CG SVM 0.7887 0.7560 0.6957

Bagged Tree 0.7801 0.8126 0.8474

Table 4.4: Comparative Study of AF detection using Different Approaches and the UFIR

Smoother (UFIRS)

Studies Acc Sens. Spec. Approach

Maji et al. [67] – 96.0% – EMD

Padmavathi et al. [44] 100% – – AR

Lee et al. [66] 99.5% 99.9% 98.7% HT

Annavarapu et al. [45] – 97.2% 95.9% RR-interval

Runnan He et al. [65] 99.2% 99.41% 98.9% WT + CNN

Tateno et al. [46] – 91.20% 96.08% RR-interval

Alcaraz et al. [43] 88.84% – – notch filter

Proposed method 99.3% 99.6% 99.9% UFIRS

amplitude is the difference between value of baseline ( In this case may be Toff or Ton) and the

value of T-peak estimated T̂. This technique is applied for normal and inverted T-waves(See fig.

5.6).

Finally, we demonstrate the performance of the approach by comparing with other available

methods.
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Evaluation of the proposed method for fiducial points

The proposed method is validated using the PTB and MIT-arrhythmia database. Both Bench-

mark are recognized and containing records with different diagnosis and pathologies such as:

Arrhythmias, Myocardial infarction, heart failure, bundle branch block, myocardial hypertrophy,

valvular heart disease, myocarditis, and healthy control . Also, we consider accepted tolerances

according to [106] for T-wave. Then a comparison with other approached is provided.

Comparison with other methods

Determined Ton, Toff errors can be computed between the reference pulse and the estimates. The

reference value is calculated by approximating the real one. Errors are averaged to determine the

mean value µ and standard deviation σ.

In the table 4.5 summarizes the results for µ and σ given in milliseconds. In [106], the reference is

determined via measurements related to boundaries of the fiducial points. We apply the UFIR-

based algorithm and other methods described in the literature; namely, the threshold detector

(TD) [107], wavelet detector (WD) [19], and morphological transform (MMD) [108]. As can be

seen, the fiducial features estimated using the UFIR-based algorithm and represented with Toff

have the smallest standard deviation indicating that the features are clustered closely around the

media.

Detection of abnormalities

Given the MIT-BIH arrhythmia database, we select four records for analysing the concentration

of the amplitude in the the T-wave. The first record has a inverted T-wave (as can see in fig 4.17,

it seek as circled) , according to the literature may be a ischemic disease heart. The second and

third records have normal behaviour. Finally, the fourth record has irregular waves with possible

inversions in the T-wave. Known the conditions of data, as can see in fig. 4.17, a considerable

discrimination is presented between abnormal and normal T-wave.

4.5 Discussion

The purpose of this investigation was to remove the measurement noise and extract concurrently

features of ECG signals in state space using the q-lag UFIR smoother. This smoother does not

require the noise statistics and initial values and is thus more suitable for ECG signals, whose noise
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Table 4.5: Comparison of the ECG Signal Features Extracted Using Different Methods

Method Parameter Ton Toff

TD [107] µ(ms) 23.3 18.7

σ(ms 28.3 29.8

MMD [108] µ(ms) 7.9 8.3

σ(ms 15.8 12.4

WD [19] µ(ms) −4.8 −8.9

σ(ms 13.5 18.8

UFIR µ(ms) 40.8 10

σ(ms) 9.63 16.9

CSE(ref) σ(ms) − 30.6

is still not well understood. We were focused on the morphological features of individual ECG

signals with normal rhythm and atrial fibrillation. To reach the highest accuracy allowed by the

UFIR smoothing approach, we have developed an efficient algorithm and tested it by diverse ECG

data in a comparison with other available techniques. The test has confirmed our expectations.

Namely, the UFIR smoother considerably outperformed several standard algorithms in noise

reduction and accuracy. That has become possible by setting optimal lags and adaptive horizons

to the UFIR smoothing algorithm.

As benchmarks, we employed several wavelet-based filters and standard filters such as the low-

pass, pass-band, median, and notch. A comparative analysis has shown that the UFIR smoother

extracts the ECG signal specific features with higher accuracy. That was also expected, since

the wavelet-based algorithms do not allow for time-varying dynamic optimization similar to the

adaptive UFIR structures, at least we did not find relevant solutions suggested for ECG signals

in the wavelet area. A critical advantage of the state-space UFIR approach is that, unlike in

the Savitsky-Golay and wavelet-based filters, noise reduction and state estimation are provided
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simultaneously. This presumes higher efficiency in noise reduction and better accuracy in features

extraction. Note that the Savitsky-Golay and wavelet-based filters are not state-space estimators.

Estimation of higher-order states can be provided using these filters a posteriori via the time-

derivatives applied to the first state estimate that is typically accompanied with larger noise. As

a result, even for the second state, the UFIR smoother produced much more accuracy in the

estimation of extreme points of MIT-BIH arrhythmia database.

It worth noticing again that the Savitsky-Golay and wavelet-based filters were already recog-

nized as standard approaches for ECG signals [42, 55–64]. In this regard, better performance of

the UFIR smoothing algorithm developed in this paper opens new horizons in accurate and precise

features extraction from measurements of ECG signals having normal and abnormal heartbeat

characteristics.

The UFIR smoother optimized for ECG signals by setting optimal lags and adaptive hori-

zons for each individual degree-polynomial has essentially outperformed the Savitsky-Golay filter,

which does not suggest such an optimization [35, 36, 38]. Accordingly, the following main results

were achieved:

1. Optimal denoising and artifacts removal with qopt-lag assigned for each optimal horizon

Nopt.

2. High accuracy in ECG signal denoising achieved using an adaptive optimal horizon Napt.

3. High accuracy in features extraction achieved taking advantages of the state-space approach.

What left behind is to notice some particular differences between the UFIR and wavelet-

based approaches. It has been revealed that errors produced by the wavelet-based filters are

more dispersed in the extracted features. We explain it by the fact that the available wavelet

shapes are not optimal for ECG signals. Furthermore, the wavelet-based filters are not state-space

estimators. Therefore, even confusing results can be expected from wavelets. Another specific is

that features extracted using the UFIR approach have appeared to be more stable than by the

machine learning techniques. That has been demonstrated in a comparison with the EMD, PCA,

HT, RR-interval analysis, WT + CNN, and notch filter.

Summarising, we state that the proposed UFIR smoothing approach is more suitable for ECG

signals then other techniques and methods considered in this paper. This have been depicted in

the table 4.4, where our method obtained 99.3% of accuracy, 99.6% of sensibility and 99.9% of

specificity. A flaw is in the computational time, which is largest among other approaches. Thus,
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it is still challenging to design fast UFIR smoother-based algorithms, although the computation

time of several seconds is not an issue for medical needs.
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Figure 4.10: Estimates of the second state (first time-derivative) provided by the Savitsky-Golay

smoother with lag q1 (4.21), UFIR smoother with lag q2, wavelet-based filters (db6, db14, sym4,

bior2.2, and coif2), low-pass filter, median filter, and notch filter.
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Figure 4.11: Baseline removal using UFIR smoothing with N=1001 and q-lag2
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Figure 4.13: Features extracted using the UFIR smoother with q-lag1 (filter 1) and q-lag2 (filter

2) and other algorithms depicted as db6 (filter 3), db14 (filter 4), sym4 (filter 5), bior2.2 (filter

6), coif2 (filter 7), low-pass (filter 8), median (filter 9), and notch (filter 10): (a) duration DurP

of P-wave, (b), duration DurQRS of QRS-complex, (c), duration DurT of T-wave, (d), amplitude

AmpP of P-wave, (e) amplitude AmpQRS of QRS-complex, and (f) amplitude AmpT of T-wave.

Features are extracted from record 100 lead II of arrhythmia MIT-BIH database.
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Figure 4.14: Features of the P-wave duration extracted using the wavelet-based filter with db6

from the AF and Normal ECG of MIT-BIH Arrhythmia Database: (a) Durp, (b) Durp normalized

histogram, (c) Ampp, and (d) Ampp normalized histogram.
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Chapter 5

ECG Signal Denoising and Features

Extraction Using Harmonic Unbiased

FIR Smoothing

In this chapter, we represent an ECG signal with a Fourier series, apply the UFIR smoother

to real measurements of ECG signals, and provide a comparative analysis with the polynomial

smoothers in terms of the denoising effect. We use the MIT-BIH Arrhythmia Database [75, 76],

from which in this paper we take only the normal and premature ventricular complex heartbeats.

In section 5.1, a brief description of harmonic model for ECG signals. In section 5.2, a optimal

horizon calculation is defined by employing harmonic model . In section 5.3, an adaptive UFIR

smoothing algorithm is designed for ECG records. In section 5.4, a evaluation for harmonic model

is developed using real and simulated data. Finally, a discussion is performed about obtained

results and literature.

5.1 State-Space Representation of ECG Signals using Harmonic

Model

In view of a quasi-periodic nature of heartbeats, we represent an ECG signal (see Fig. 5.1) with

a Fourier series corrupted by noise,

y(t) = A0,t +

M
∑

m=1

Am,t cos(mωt) + v(t) , (5.1)

80
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Figure 5.1: An example of the centralized ECG record taken from MIT-BIH Arrhythmia

Database. The record 100/MLII features are depicted as P, QRS complex and T waves. Ap-

plied a correction of baseline, the ECG measurement average is near to zero

where ω is the fundamental angular frequency widely given as ω = 2πfd, fd is the fundamental

frequency, M is the number of harmonics (see Fig. 5.2), Am,t are time-varying amplitudes asso-

ciated with the mth harmonic, and v(t) is an additive zero mean white Gaussian noise. Before

applying an estimator, we make efforts to centralize the ECG data about zero. Therefore, the

DC offset component becomes zero, E{A0,t} = 0, and we will further omit A0,t. If we introduce

the discrete time tk, k = 0, 1 . . ., a time step ∆t = tk − tk−1, and set A0,t = 0, then the model

(5.1) can be represented as

yk =

M
∑

m=1

Am,k cos(mω∆tk) + vk . (5.2)

Assuming that the mth harmonic components ∆Am,k is random, the magnitude of the mth
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Figure 5.2: Single sided Magnitude spectrum: fundamental frequency fd and first harmonics

harmonic component at time index k + 1 can be represented as

Am,k+1 = Am,k +∆Am,k . (5.3)

Referring to (5.2), we now introduce a (2M)-state vector xk,

xk =































x1k

x2k

...

x2M,k

x2M+1,k































=























A1,k cos(w∆tk)

A1,k sin(w∆tk)
...

AM,k cos(Mw∆tk)

AM,k sin(Mw∆tk)























, (5.4)

where the components xi,k, i ∈ [1,M ], are specified by the model (5.2). Accordingly, the time-
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invariant state space model of an ECG signal can now be written as

xk = Axk−1 +wk , (5.5)

yk = Cxk + vk , (5.6)

where matrix A is specified as

A = [blockdiag(Θ(m),m = 1, · · · ,M)] , (5.7)

where “blkdiag” in (5.7) means a block of matrices Θ(m) represented by

Θ(m) =





cos(mω) − sin(mω)

sin(mω) cos(mω)



 . (5.8)

For this model, the observation vector becomes

C = [1 0 . . . 1 0]

and we think that the measurement noise vk has zero mean, E{vk} = 0, and unknown distribution

and statistics, as it usually is in practice. Given the state-space model (5.5) and (5.6), the UFIR

smoothing algorithm can be used as in the following.

5.1.1 Unbiased FIR Smoothing

The p-shift UFIR filtering approach [109] described by chapter 3 as convolution and chapter 4

as matrix form, suggests that 1) UFIR filtering must be provided as x̂k and 2) the q-lag UFIR

smoothing organized by projecting the filtering estimate x̂k to k − q as x̂k−q = A−qx̂k.

On a horizon [m,n] of N points, from m = n − N + 1 to n, the UFIR filter processes N

past ECG data yn. To provide a near optimal output, the horizon length must be set optimally

as Nopt. For the sake of best denoising with the minimum mean square error (MSE), it is also

required to make the horizon adaptive around the QRS complex (Fig. 5.1).

The batch UFIR filtering estimate can be represented as follow [109],

x̂k = Hm,kYm,k (5.9a)

= (WT
m,kW

T
m,k)

−1WT
m,kYm,k , (5.9b)

where Ym,k represents the observation vector, Hm,k is the UFIR filter gain, and Wm,k is an
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auxiliary matrix,

Ym,k = [ yTm yTm+1 . . . y
T
k ]T , (5.10)

Wm,k =























C(Am+1)−1

C(Am+2)−1

...

CA−1

C


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















, (5.11)

where the product A is specified as

Ag
r =



























Ar−g+1 , g < r + 1 ,

I , g = r + 1 ,

0 , g > r + 1 .

(5.12)

The discrete convolution-based batch UFIR filter estimate thus appears as x̂k = Hm,kYm,k,

where the UFIR filter gain is computed by Hm,k = (WT
m,kW

T
m,k)

−1WT
m,k = Gm,kW

T
m,k, where

Gm,k is the generalized noise power gain (GNPG)

Gk = Hm,kH
T
m,k = (Wm,kWm,k)

−1 , (5.13)

which is responsible for an optimal balance between the regular (bias) and random errors. Pro-

vided x̂k, the q-lag UFIR smoothed estimate appears by projecting the filtering estimate to k− q

as x̂k−q = A−qx̂k.

The batch estimate (5.9a) can also be computed iteratively using recursions [3, 72, 109], like

in the Kalman filter. Since our concern in this work is to reduce smoothing errors, we will not

consider the computational complexity of (5.9a) and postpone it to the next stage.

5.2 Optimal Horizon for UFIR smoother employing harmonic

model

To achieve the best denoising effect in ECG signals, the UFIR smoother must operate on optimal

averaging horizons of Nopt points, which can be found for the UFIR filter following a methodology

worked out in [3, 4].

To specify Nopt, we select 10000 samples of healthy heartbeats and consider several harmonics

of the Fourier series (5.2). Following [93], we compute the measurement residual as a difference
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between the ECG data and the filter output, compute the mean square value (MSV) of the

residual as a function of Nmin 6 N 6 103, and approximate this function with a cubic polynomial

as VN . We next apply the derivative ∂VN/∂N , find its minimum, and find Nopt at this point

for several harmonics (m = 1, 2, 3, 5) as shown in Fig. 5.2–Fig. 5.6. As can be seen, Vn behaves

similarly for all of the harmonics selected, although the value of Nopt decreases from 14 for m = 1

to 7 for m = 5.
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Figure 5.3: Effect of N on the MSV (circled) for m = 1. A cubic approximation of the MSV is
√
VN and the optimal horizon Nopt = 14 corresponds to the minimum of

√

∂
∂N

VN .

Visually, an analysis of the smoothing errors [110] produced by the 1st and 3rd harmonics

reveals no significant differences, except for the horizon length, which inherently grows with m.

This fact can be explained by the observation that a lag q = N−1
2 makes the noise power gain

(NPG) in both smoothers equal [69]. The role of q-lag on the NPG of the p-shift UFIR filter,

q = −p, has been studied in [69]. The optimal shifts were implemented in [3, 4] as the p-shift 1
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Figure 5.4: Effect of N on the MSV (circled) for m = 2. A cubic approximation of the MSV is
√
VN and the optimal horizon Nopt = 14 corresponds to the minimum of

√

∂
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VN .

and p-shift 2.

Given A by (5.7) and C (see Section 5.1), Fig. 5.7 sketches smoothed estimates provided

using the 1st, 3rd, and 5th harmonics of an ECG signal.

It follows that the estimates are accurate in the slow part. To smooth a fast excursion around

the QRS complex, an adaptive similar algorithm developed in [3, 4] is applied to avoid bias errors

in ECG records.

5.3 Adaptive UFIR smoothing algorithm for ECG records

Unlike adaptive algorithm developed in [3, 4], the algorithm iterative UFIR smoothing with QRS

complex correcting (see algorithm 5.3) bears the problem associated to fast excursion near to QRS
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Figure 5.5: Effect of N on the MSV (circled) for m = 3. A cubic approximation of the MSV is
√
VN and the optimal horizon Nopt = 14 corresponds to the minimum of
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complex by using the estimate standard deviation. We primordially apply the algorithm 4.1.4

proposed in section 4 with optimal horizon Nopt to ECG records. Hence considering the estimate

xNopt
, the EC measurement Si, window parameters WindLeft and WindRight, we develop a

adaptive automatic algorithm that estimates the ECG records. The algorithm receives the above

parameters to calculate the estimate x̃. Initially, we calculate the difference between the estimate

xNopt
and measurement Si which the residual difference is denoted by Di. After, we create a

function called QRSCorrect (see algorithm 5.3) which receives x̃i, Si, WindLeft and WindRight.

We consider the residual Di to calculate the standard deviation by std function. Here, we

stablish frontiers conditions to correct the bias of estimate. The windows parameter WindLeft

and WindRight comprehend the width of window where the bias prevails in the ECG records.

Experimentally, we have consider 3rd harmonic, WindLeft= 2 and WindRight =5 to estimate
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two ECG records each other with different pathology (see 5.7 and 5.8.)

5.4 Testing UFIR Smoother by Harmonic Model

All tests of synthetic data are provided using a special software designed on the MATLAB plat-

form. The simulated signals employ the Fourier series assuming that data are corrupted at

different levels by white Gaussian noise. Hence, we now provide an experimental test of the

UFIR smoother performance by a harmonic model with the following system matrix

A =





cos(ω1∆tk) − sin(ω1∆tk)

sin(ω1∆tk) cos(ω1∆tk)



 (5.14)
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Figure 5.7: UFIR smoothing of an ECG signal using the 1st harmonic (dotted), 3rd harmonic

(dashed), and 5th harmonic (solid-dotted). The ECG data are depicted with a solid line.

and observation matrix C = [1 , 0], where ω1 is a chosen angular fundamental frequency. For a

periodic signal y = cos θ+sin θ corrupted by an additive white Gaussian noise (AWGN) with mean

zero and the variance σ2 = 0.0625, the results are sketched in Fig. 5.9. A comparison is provided

with respect to the polynomial model discussed in [3, 4]. As can be seen, both UFIR smoothers

are most successful in accuracy, since their estimates range most close to the generated signal.

To support this conclusion, the smoother RMSEs computed over 1000 iterations are sketched in

Fig. 5.10.
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Figure 5.8: Estimation of ECG signals with single ventricular premature complex (VPC)

Algorithm 7 Automatic iterative UFIR Smoothing Algorithm for ECG records with QRS com-

plex correcting

Data: Si, ˆxopt, WindLeft, WindRight

Result: x̃

1: x̃ = x̂Nopt

2: Begin :

3: for i = K + 1 : length(Si) do

4: Di=x̂Nopt
(:, 1)− Si

5: xest= QRSCorrect(Si, x̃, WindLeft, WindRight)

6: end for
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Algorithm 8 QRScorrect

1: if Di > std(Di) || Di < −std(Di) then

2: for j = 0 :WindLeft do

3: x̃(i− j, 1)=S(i−j)

4: end for

5: for k = 1 :WindRight do

6: x̃(i+ k, 1)=S(i+k)

7: end for

8: end if
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Figure 5.9: Denoising of a test harmonic signal (solid) corrupted by the AWGN using a harmonic

filter (double dash-triple dots), UFIR smoother with q-lag 1 (dotted) [3] and with q-lag 2 (one

dash-dotted) [4].
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Figure 5.10: RMSEs corresponding to Fig. 5.9 as computed over 1000 iterations for the harmonic

filter, UFIR q-lag 1 smoother, and UFIR q-lag 2 smoother.

5.4.1 Signal-to-Noise Ratio (SNR) Analysis

We next provide an analysis of the signal-to-noise ratios (SNRs) at the filter outputs in terms of

root mean square error (RMSE). A synthetic ECG signal having characteristics similar to a real

ECG is considered with known noise. For a comparison, we consider as well a polynomial model.

As can be seen in Fig. 5.11, the harmonic model-based filter outperforms both the polynomial

model-based UFIR smoothers.
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Figure 5.11: RMSEs of the UFIR smoother compared to the polynomial and harmonic model

and standard filters.

5.4.2 Percentage-root-mean-square difference (PRD) Analysis

Initially, the polynomial filter q-lag 1RMSE shows to be major to polynomial filter q-lag 2 and

harmonic filter RMSE. The two last mentioned filters outperform to polynomial filter q-lag.

Among 20 and 25 of signal noise to ratio (SNR) the percentage root-mean-square difference

represents 5% to 3% for three UFIR smoothers. However, the harmonic UFIR smoother highlights

over the polynomial UFIR smoother. We depict this analysis in the figure 5.12.

5.5 Discussion

Profound learning of the electrocardiogram (ECG) signal features play a crucial role in medical

sector, allowing finding cardiac disease patterns. The problem one meets here is that noise
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Figure 5.12: PRD of the UFIR smoother compared to the polynomial and harmonic model.

and artifacts, which are caused by the acquisition and breathe and other body affects, make an

automatic detection of ECG signal patterns unreliable and modern signal processing algorithms

are required. Therefore, many denoising algorithms have been designed for ECG signals [6, 7, 9]

to felicitate features extraction. The standard low-pass and band-pass filters developed for ECG

signals in [94] implying that an ECG signal is stationary. The approach provides a satisfactory

denoising in the frequency domain, but overlooks the time resolution. This flaw was overcome in

[26, 56] using the wavelet transform and a properly chosen wavelet. Yet another method based

on empirical mode decomposition was developed in [59].

In many cases, denoising of ECG signals requires more accurate (optimal and robust) methods

due to the not well-known origin of the heart noise and data artifacts. In this regard, smoothing

techniques are recognized as most powerful to remove noise while retaining fundamental properties

of ECG signals. An example is the smoothing technique developed by Savitsky and Golay (SG)
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[33], which is widely applied to ECG signals [34, 35, 38]. But, as a fairly old polynomial technique,

the SG smoother has two flaws: its batch form is computationally inefficient and the output is

related to the middle of the averaging horizon that does not hold for all degrees.

A more general unbiased finite impulse response (UFIR) smoothing technique has been de-

veloped in [69] to generalize the SG smoother in a special case. The UFIR smoother operates

in discrete-time state-space, has a fast iterative algorithm using recursions, and suggests that

a suboptimal smoothing can be provided if to set an averaging horizons optimally as Nopt and

choose an optimal lag qopt. It is shown that an optimal lag qopt corresponds to the middle of the

averaging horizon only for odd-degree polynomials. Otherwise, qopt must chosen individually for

each even degree [68–70]. Note it as an essential difference with the SG smoother, which suggests

the middle horizon point for all degrees.

In the chapter 3 and 4, the polynomial approach has been developed in [3, 4] for models

employing the Taylor series expansion. It has been shown that the polynomial UFIR smoother

produces more accuracy than other techniques. However, the polynomial model does not fit well

with a quasi periodic ECG signal and further improvements have been achieved if to represent

an ECG signal with the Fourier series. This deduction follows from the fact that the harmonic

model is widely used in power systems, where signals are also quasi periodic [111–119]. Even

thought, we find only a few works applying a harmonic model to ECG signals [120, 121].

Therefore, we have shown from RMSE and SNR analysis that the harmonic model is much

more appropriate than the polynomial model for ECG signals with a significant difference of

approximately 2%. This analysis is validated in Fig. 5.10 where the RMSE for Harmonic is

35.7 × 10−3 and for the q-lag polynomial model is 53.1 × 10−3. But we limit the work by

considering that the ECG signals are quasi-periodic signals. Therefore, in scenarios where the

signal is aperiodic, it is not reasonable to use this model.
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Conclusions and future work

6.1 Conclusions

The UFIR smoothing filtering approach developed in this paper for ECG signals denoising and

features extraction has demonstrated an ability to outperform the linear predictor-based on [1],

which is recognized as one of the standard techniques for ECG signals. That has become possible

by optimizing the order and averaging horizon for the UFIR smoothing filter in a way such that

the horizon has become adaptive to different parts of ECG signals. A comparison of the UFIR

predictive, filtering, and smoothing estimates has revealed a considerable difference in denoising

in favor of the smoothing one. The results have also indicated that features extracted using the

smoothing filter are more reliable and less prone to large deviations from average values. This is

definitely an important advantage for medical needs.

The state-space UFIR smoothing approach developed in this paper for ECG signal denoising

and features extraction has demonstrated better results than approaches employing the Savitsky-

Golay smoother, wavelet-based filtering, and standard filters such as the low-pass, high-pass,

notch, and median. That has become possible by designing an adaptive UFIR smoothing al-

gorithm operating with optimal lags on optimal averaging horizons and approximating ECG

signals with optimal degree-polynomials. Based upon this algorithm, the extracted features were

evaluated by different classifiers and compared to performances provided by other methods.

Applications given for the P-wave features extraction based on detected fiducial points, has

also shown a potential of the approach in a comparison with other methods. A modified UFIR

smoother based on the harmonic model has been developed for ECG signals and an optimal

horizon determined for the first, third, and fifth harmonics. It has been demonstrated that the

96
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UFIR smoothers relying of the first and third harmonics produce the best denoising effect in

the ECG signal. The harmonic model-based UFIR smoother also outperforms the polynomial

model-based UFIR smoothers in terms of the SNR and MSE.

6.2 Future work

Although, as we have just said, we consider that the objectives of the thesis have been accom-

plished. There are many improvements that could be made to achieve better results. In the

following section, we present for each of the aspects of the investigation carried out in this thesis,

some open topics that deserve further investigation. Note that it is basically a compilation of the

future work sections of each of the previous chapters (chapters 3, 4, and 5).

6.2.1 High order harmonic UFIR smoother

For the harmonic UFIR smoother, we have developed estimates in low order harmonics. However,

we lack analysing the second state which means the estimated derivative, here, we could consider

the derivative to increase the accuracy for feature extraction in ECG records. In addition, we

plan to change the UFIR smoother approach for high order harmonics. This change could provide

a far more appropriate scenario to find the optimal Nth harmonic for the ECG records.

6.2.2 Segmentation of ECG heartbeats

The ECG signals segmentation is an open problem in this investigation because of the variability

provided by some arrhythmias. Here, the segmentation has been automatic by considering a

window fixed that covers an ECG heartbeat. This method can work for some abnormalities when

the ECG signals period does not vary significantly. But all ECG heartbeats cannot possess this

same nature. There are specific cases where e.g. the P-wave disappears, making that heartbeat be

drastically short on time. Hence, to use a fixed window it is not enough to solve all the problems

associated with ECG signals. A heart rate variability analysis (HVRA) could be useful.

6.2.3 Pattern recognition

In this research work, we tested ECG signals features by applying some machine learning tech-

niques. Here, the employed techniques provide favourable results. Hence, we only analysed the

ECG signal in space-time, but we believe the performance of the classifiers could be better if we
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continue in the exploration of extra features in different spaces. Even a mixture of temporal fea-

tures with features extracted by a different space might be an interesting experiment that could

provide important results. In addition, we could consider the UFIR estimate as preprocessing

step to apply after deep learning technique.

6.2.4 Biomedical signals

We uniquely developed UFIR filtering for ECG signals. However, we could explore other signals

with similar characteristics. To illustrate, we could find biomedical signals such as EEG and

EMG in low frequency. This filter has a great potentiality in this frequency band. In this sense,

we could provide promising results.

6.2.5 Hardware implementation

According to the literature review, the UFIR techniques have been developed in applications such

as GPS, sensors, and biomedical signals. Initially, the UFIR filter required high memory as a

batch structure. As time passed, a new UFIR filter with iterative structure was developed which

its required memory depends on the optimal horizon. This is a promising scenario that motivates

us to implement this filter in cost medium or low electronic devices.
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Appendix A

Low-Degree UFIR Functions hli(N, p)

A.0.1 Ramp, l = 1:

h1i(p) = a01(N, p) + a11(N, p)i , (A.1)

where

a01(N, p) =
2(2N − 1)(N − 1) + 12p(N − 1 + p)

N(N2 − 1)
, (A.2)

a11(N, p) =
6(N − 1 + 2p)

N(N2 − 1)
. (A.3)

A.0.2 Quadratic, l = 2:

h2i(p) = a02(N, p) + a12(N, p)i+ a22(N, p)i2 , (A.4)

where

a02(N, p) = 3

3N4 − 12N3 + 17N2 − 12N + 4

+ 12(N − 1)(2N2 − 5N + 2)p+ 12(7N2 − 15N + 7)p2

+ 120(N − 1)p3 + 60p4

N(N2 − 1)(N2 − 4)
, (A.5)

a12(N, p) = −18

2N3 − 7N2 + 7N − 2

+ 2(7N2 − 15N + 7)p+ 30(N − 1)p2 + 20p3

N(N2 − 1)(N2 − 4)
, (A.6)

a22(N, p) = 30
N2 − 3N + 2 + 6(N − 1)p+ 6p2

N(N2 − 1)(N2 − 4)
. (A.7)
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Appendix B

UFIR Filter for state space

B.1 Extended model in state space

Let me consider the model following,

xn = Axn−1 +EnUn +Bnwn, (B.1)

yn = Cxn + vn , (B.2)

Then, a state space transformation is given by,

xn = Anxn−1 +EnUn +Bnwn

xn−1 = An−1xn−2 +En−1Un−1 +Bn−1wn−1

xn−2 = An−2xn−3 +En−2Un−2 +Bn−2wn−2

...

xm+2 = Am+1xm+1 +Em+2Um+2 +Bm+2wm+2

xm+1 = Am+1xm +Em+1Um+1 +Bm+1wm+1

xm = Amxm +EmUm +Bmwm

(B.3)

Hence,
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xn = AnAn−1xn−1 +AnEn−1Un−1 +AnBn−1Wn−1 +EnUn +Bnwn

xn = AnAn−1An−2xn−3 +AnAn−1En−2Un−2 +AnAn−1Bn−2Wn−2

+AnEn−1Un−1 +AnBn−1wn−1 +EnUn +Bnwn

xn = AnAn−1 . . .Am+1xm +AnAn+1 . . .Am+2Em+1Um+1 + . . .

+AnEn−1Un−1 +EnUn +AnAn−1 . . .Am+2Bm+1wm+1 + . . .AnBn−1wn−1 +Bnwn

(B.4)

Then, each matrix in general form can be represented as follow,

Xm,n =

















xm

xm+1

...

xn

















, Um,n =

















Um

Um+1

...

Un

















, Wm,n =

















wm

wm+1

...

wn

















. (B.5)

Considering the augmented matrix,

Ag
r =



















An,Ar−1 . . .Ag, g < r + 1

I, g = r + 1

0 g > r + 1

(B.6)

Fm,n =

















I

Am+1

...

Am+1
n

















, (B.7)

Sm,n =























Em 0 . . . 0 0

Am+1Em Em+1 . . . 0 0
...

...
. . .

...
...

Am+1
n−1 Em Am+2

n−1 Em+1 . . . En−1 0

Am+1
n En Am+2

n−1 Em+1 . . . Am+1
n En−1 En


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

















, (B.8)
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Dm,n =























Bm 0 . . . 0 0

Am+1Bm Bm+1 . . . 0 0
...

...
. . .

...
...

Am+1
n−1 Bm Am+2

n−1 Bm+1 . . . Bn−1 0

Am+1
n Bn Am+2

n−1 Bm+1 . . . Am+1
n Bn−1 Bn























, (B.9)

Hence, we have a general definition of the model in state space,

Xm,n = Fm,nxm + Sm,nUm,n +Dm,nWm,n (B.10)

Ym,n = Hm,nxm + Lm,nUm,n +Gm,nWm,n +Vm,n (B.11)

The measurement y have the definition following,

yn = Cnxn + vn

yn−1 = Cn−1xn−1 + vn−1

yn−2 = Cn−2xn−2 + vn−1

...

ym = Cmxm + vm

(B.12)

Where,

Ym,n =

















ym

ym+1

...

yn
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









, Vm,n =
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













vm

vm+1

...

vn

















, (B.13)


