COURS

MÉCANIQUE ET MACHINES.

1. Autour at l'Éditour de cet Ouvrage se réservent le droit de le traduire ou de le faire traduire en toutes les langues. Ils poursuivroet, en vertu des Lois, Décrets et Traités internationaux, toute contrefaçon, soit du texte, soit des gravures, on toute traduction faite au mépris de laurs droits.

Le dépôt légal de cet Ouvrage (deuxième fasciquie) a été fait à Paris dans le cours de 1868, et toutes les formalités préscrites par les Traités sont remplies dans les divers États avec lesquels in France a conclu des conventions littéraires.

Tout exemplaire du présent Ouvrage qui ne porterait pas, comme ci-dessous, la griffe de l'Éditour, sera réputé contrefuit. Les mesures nécessuires seront prisés pour attaiedre, conformément à la loi, les fabricants et les débitants de ces exemplaires.

fanthier Villars

PARIS. — IMPRIMERIE DE GAUTHIER-VILLARS, Bue de Soine-Saint-Germain, 10, près l'Institut.

COURS

BE

MÉCANIQUE ET MACHINES

PROFESSE

A L'ÉCOLE POLYTECHNIQUE,

PAR M. EDM. BOUR,

INGENTEUN DES MINES;

Public par M. Phulles, Professour de Mécanique à l'École Polytechnique, avec le collaboration de MM. Collaboration de KM. Collaboration de KM.

STATIQUE GUANAJUATO

TRAVAIL DES FORCES DANS LES MACHINES A L'ÉTAT RE MOUVEMENT ENIFORME.

AVEC ATLAS DE 8 PLANCHES IN-4°.

PARIS,

GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE

DU BURBAU DES LONGITUDES, DE L'ÉCOLE IMPÉRIALE POLYTECHNIQUE, SUCCESSEUR DE MALLET-BACHELIER, Quai des Augustins, 55.

1868

(1.'Auteur et l'Editour de cet Ouvrage se réservent le droit de traduction.

easto, drait de traducition.)

¥

TABLE DES MATIÈRES.

	'ages.
AVERTISSEMENT	Att
PREMIÈRE SECTION.	
STATIQUE.	×.
CHAPITRE PREMIER. — Principes fondamentaux de la Statique et de la Dynamique	.3
CHAPITRE II Équilibre d'un point matériel	33
CHAPITRE III. — Équilibre des systèmes quelconques de points matériels	39
CHAPITRE IV. — Équilibre des solides invariables	66
CHAPITRE V Applications de la Statique	97
DEUXIÈME SECTION.	
TRAVAIL DES PORCES DANS LES MACRINES A L'ÉTAT DE MOUVEMEN UNIFORME.	T
CHAPITRE PREMIER. — Notions générales sur le travail des forces dans les machines	137
CHAPTERE II. — Des résistances passives	165
CHAPITRE III Des cordes et courroles	208
CHAPITER IV Appareils servant à mesurer le travail des forces.	221

AVERTISSEMENT.

Ce fascicule est le deuxième du Cours de Mécanique et Machines professé à l'École Polytechnique par M. Edm. Bour, pendant la trop courte durée de son enseignement dans cette École.

Lorsque la mort vint prématurément interrompre la carrière scientifique si brillamment parcourue par le jeune Professeur, le premier fascicule de son Cours (Cinématique) avait seul été publié, et on pouvait craindre que la suite ne fût perdue pour la science; mais il avait laissé entre les mains de son ami, M. Mannheim, Professeur à l'École Polytechnique, le manuscrit de la fin de son Ouvrage. M. Mannheim, voulant s'entourer de toutes les garanties possibles pour la publication de ce manuscrit, a obtenu le concours dévoué de MM. Phillips, Collignon et Kretz.

M. Phillips, qui a été appelé à succéder à M. Bour dans la chaire de Mécanique, était mieux que personne en position de revoir la rédaction, d'en combler les lacunes, en un mot de mener à bonne fin une si délicate entreprise. M. Collignon, Ingénieur des Ponts et Chaussées, avait été le répétiteur du Cours de M. Bour à l'École Polytechnique. Enfin M. Kretz, Professeur de Mécanique à l'École d'Application des Ingénieurs des Manufactures de l'État, ami intime de M. Bour, avait une connaissance complète des idées de l'Auteur sur la Mécanique et avait spécialement discuté avec lui toutes les questions relatives aux applications de la théorie aux machines.

G.-V.

COURS

MÉCANIQUE ET MACHINES

PAUFERS

A L'ÉCOLE POLYTECHNIQUE.

STATIQUE

ET

TRAVAIL DES FORCES DANS LES MACHINES

A L'ETAT DE MOUVEMENT UNIFORME.

Ce volume est divisé en deux Sections.

La première a pour objet la Statique proprement dite, c'està-dire l'étude des lois de l'équilibre des forces appliquées aux systèmes matériels.

La seconde est consacrée aux machines, et comprend l'exposition du théorème des forces vives, l'application de ce théorème aux machines en mouvement, la mesure du travail des forces, et l'étude particulière des résistances passives, entre autres du frottement de glissement.

PREMIÈRE SECTION.

STATIQUE.

CHAPITRE P

PRINCIPES FONDAMENTAUX D

ET DE LA DYNAMIQUE.

Le véritable objet de la Mécanique est l'étude du mouvement dans ses rapports avec les causes qui lui ont donné naissance et qui en déterminent les diverses affections.

Le but de cette étude est de nous mettre à même de résoudre le problème suivant, problème qui ne présente pas la moindre analogie avec ceux que nous avons rencontrés en Cinématique:

Un corps étant placé dans des conditions parfaitement définies, quel mouvement va-t-il prendre?

Réciproquement : Pour obliger un corps à prendre un mouvement donné, comment faut-il faire?

Commençons par définir avec précision les expressions, empruntées pour la plupart au langage ordinaire, qui sont d'un usage continuel dans la science que nous abordons.

Définitions.

Un corps, en Géométrie pure, est simplement une portion blen délimitée de l'étendue. Au point de vue physique, un corps est quelque chose de matériel (*), réunissant à la propriété de l'étendue celle de l'impénétrabilité (dont nous aurons plus tard à préciser le véritable caractère), et quelques autres attributs qui se rapportent d'une manière toute spéciale à la partie de la Mécanique à laquelle nous sommes naturellement arrivés.

Du point matériel. — Nous avons distingué soigneusement, en Cinématique, le mouvement simple d'un point géométrique, des phénomènes beaucoup plus compliqués que nous offre le mouvement d'un corps de dimensions finies, même quand ce corps peut être considéré comme solide, c'est-à-dire comme invariable de forme.

De même, dans le nouvel ordre d'idées que nous abordons, nous simplifions considérablement les choses en considérant d'abord un corps assez petit pour que nous puissions faire abstraction de ses dimensions, ne pas nous préoccuper des mouvements relatifs de ses diverses parties, et voir uniquement le mouvement simple de l'un quelconque de ses points.

L'élément auquel on arrive en concevant ainsi un corps divisé en parties de plus en plus petites, élément qui conserve nécessairement toutes les propriétés du corps et en particulier la qualité d'être matériel, cet élément, dis-je, est connu sous le nom de point matériel.

Un point matériel est donc un corps dont les dimensions dans tous les sens peuvent être considérées comme plus petites que toute grandeur assignable, sont infiniment petites, suivant le langage mathématique. Un corps de dimensions

GHAP. 1. — PRINCIPES FONDAMENTAUX DE LA STATIQUE, ETG. 5 finies est la collection d'une infinité de points matériels, liés

entre eux d'une manière quelconque (*).

Les premiers chapitres de la Statique et de la Dynamique sont naturellement consacrés à l'étude de l'équilibre et du mouvement d'un point matériel.

§ 1. — ÉQUILIBRE D'UN POINT MATERIEL.

Des principes de la Mécanique rationnelle.— Le caractère de ces principes a été différemment apprécié: les uns y ont vu des axiomes évidents, les autres des faits d'expérience, d'autres encore des postulats, des hypothèses. La difficulté est des plus sérieuses.

D'une part, en effet, on ne peut guére nier la certitude rationnelle de la Mécanique, dont les théorèmes présentent le même caractère que les vérités les mieux démontrées de la

Géométrie.

D'autre part, la valeur d'une conséquence ne saurait être supérieure à celle des prémisses, et l'on ne peut dire que les principes de la Mécanique soient d'une évidence absolue, qu'ils s'imposent nécessairement à la raison comme les axiomes fondamentaux de la Géométrie.

Les principes de la Mécanique présenteraient plutôt le caractère de postulats, plus ou moins analogues à la proposition célèbre qui sert de base à la théorie de parallèles. L'exactitude de ces principes ou postulats est rendue à posteriori incontestable par la vérification expérimentale des résultats que la Mécanique rationnelle en déduit par des raisonnements rigoureux; et la plus grande preuve de ce genre se trouve dans la concordance remarquable des mouvements des corps célestes avec les lois théoriques de ces mouvements.

^(*) Voici une définition de la matière, emprentée à un excellent ouvrage de M. Cournet:

^{*} L'expérience la plus l'amilière nous apprend que les objets qui afficetent nos sens d'une manière si variée, et auxquels naus donnous le nom de coryre quand nous voulons les désigner par une appellation commune, sont sujets, non-sculement à se déplacer, mais encore à changer de dimensions, de figure, d'aspect et d'état, et même à périr dans leur individualité par la désagrégations et la dispersion de leurs parties.

Ce qui persiate après le changement ou la destruction du corps, en restant inaltérable dans la collection des parties, c'est ca que nons appelons in mutière, a (Traité de l'enchaînement des idées fondamentales dans les seiences et dans l'histoire, chap. III, Des idées de mutière, de musse et d'inertie.)

^(*) Nous verrous que, dans certains cas, un corps, solide ou non solide, voire même la réunion de plusiours corps indépendants, se comporte comme si toute la matière correspondante disit condensée autour d'un certain point dans un volume aussi exign qu'on roudre le supposer.

L'étude de l'équilibre et du mouvement d'un point materiel n'est donc pas une pure abstraction, on simple point de départ de ce qui se rapporte à un corps proprement dit : c'est un chapitre de la Mécanique qui comporte des applications spéciales.

CHAP. 1. — PRINCIPES FONDAMENTAUX DE LA STATIQUE, ETC.

La force est dite appliquée au point; celui-ai est le point d'application de la force.

La direction suivant laquelle le point d'application d'une force commence à se mouvoir s'appelle la direction de la force.

demandant au lecteur de les accepter sans démonstration, sont au nombre de trois seulement(*): les deux premiers se rapportent au mouvement d'un point matériel.

PREMIER PRINCIPE. — Loi de l'inertie de la matière. — Cette loi doit s'énoncer de la manière suivante :

Un point matériel en repos ne peut jamais prendre de mouvement sans la présence d'une cause externe.

Il faut bien remarquer que la propriété de l'inertie appartient exclusivement à cet être de raison qu'on nomme point matériel. Notre premier principe nous apprend que la cause qui fait passer un pareil corps de l'état de repos à l'état de mouvement est externe, et voilà tout.

Cette cause, quelle qu'elle solt, reçoit en Mécanique le nom générique de force (**).

Ainsi, un corps abandonné à lui-même se met en mouvement, il tombe, donc il est soumis à une force; cette force a reçu le nom de pesanteur.

Un grand nombre de forces sont ainsi désignées par des noms spéciaux, tels que l'attraction magnétique, la tension des vapeurs, l'élasticité des solides, etc. Mais, sans entrer pour le moment dans la discussion des propriétés particulières de chaque espèce de force, nous pouvons dire d'une manière générale:

Toutes les fois qu'un point malériel en repos se met en mouvement, ce point est sollicité par une force.

(*) Toutes les autres propositions pour losquelles l'usage à consacré le nom de principes sont de véritables théorèmes, comme nous le verrous. Outre la direction et le point d'application d'une force, un troisième élément est encore nécessaire pour que cette force soit définie d'une maniere complète : c'est la grandeur, ou, comme on dit, l'intensité de la force.

Nous comprenons parfaitement que des effets identiques proviennent de forces égales; nous comprenons également qu'il existe des forces inégales. Par suite, la force nous apparaît comme susceptible d'augmentation et de diminution : c'est donc une quantité qu'on peut comparer à une grandeur de même nature, prise pour unité et dont on peut avoir une expression numérique. Nous ne tarderons pas à voir comment les principes de la Mécanique permettent de réaliser cette conception.

On représente en Mécanique une force par une ligne droite (fig. 1). A étant le point d'application, on prend sur la ligne qui représente la direction de la force une longueur AF proportionnelle au nombre qui en mesure l'intensité; et l'on obtient une ligne AF, qui représente la force en grandeur et en direction.

Deuxieme principe. — Loi de l'indépendance et de la composition des effets des forces. — De la manière dont nous avons défini ce qu'on doit entendre par une force et par la direction d'une force, il résulte nécessairement que toute force agissant seule, sur un point matériel en repos, aura pour effet de faire prendre au point un certain mouvement dans la direction de la force. Ceci est un premier point parsaitement acquis à la science.

Si nous considérons actuellement une force F, appliquée à un point en mouvement, point soumis d'autre part à l'action d'un nombre quelconque d'autres forces, F', F", . . . et que nous nous demandions quel sera dans ces conditions l'effet de la force F, il est clair que nous nous trouvons en face d'un problème d'un ordre tout nouveau. Ce problème ne peut être

^(**) a Vidée de force, dit M. Cournet, provient originairement de la conscience de pouvoir que nous avons d'imprimer du mouvement à notre propre corps et aux corps qui nous entenent, jointe au sentiment intime de l'effort ou de la tension musculaire, qui est la condition organique du déploiement de notre puissance motrice. Si nous n'avions pus le sentiment de l'effort muscu-maire, le speciacle du monde pourrait bien encore nous suggèrer la notion de l'étendue des figures et celle de leurs mouvements, mais l'idée fondamentale de la Mécanique et celle de hieu d'autres théories nous échapperaient tout à fait, « (Traité de l'enchaliement des idées, «to., p. (51.)

CHAP. I. - PRINCIPES FONDAMENTAUE DE LA STATIQUE, ETC.

résolu qu'à l'aide d'un deuxième principe, axiome ou postulat, que nous énoncerons de la manière suivante :

Une force agit sur un point matériel en mouvement, et sollicité par des forces quelconques, absolument comme si elle était seule et comme si le point était en repos.

Avec cette proposition, dont la première notion est due à Galilée, nous avons maintenant tout ce qu'il est nécessaire de conneltre pour établir les fondements de la Statique et de la Dynamique du point matériel; mais l'énoncé que nous venons de donner a besoin de quelques éclaircissements pour être bien compris.

Soit MA (fig. 3) la trajectoire d'un point matériel soumis à l'action de forces quelconques F', F'',...; par une position quelconque M du mobile, faisons passer trois axes rectangulaires,
et supposons que ces axes se transportent parallèlement à euxmêmes, l'origine décrivant la trajectoire MA, avec les mêmes
accidents de mouvement que le point M.

Les choses restant ainsi disposées, le point M ne cessera pas de coïncider avec l'origine des axes mobiles; relativement à ces axes, il se trouvers en repos. Supposons maintenant qu'une nouvelle force F vienne à agir sur le point M, cette force modifiera évidemment le mouvement primitif; notre mobile se séparera de l'origine, il prendra un certain mouvement par rapport aux axes que nous avons définis. Cela posé, notre principe veut dire que ce mouvement relatif est absolument indépendant du mouvement des axes, et le même que si la force agissait seule sur le corps en repos.

Il suit de là que le point M, relativement aux axes mobiles, va prendre un certain mouvement dans la direction de la force F; et la composition de ce mouvement relatif avec le mouvement d'entraînement fera connaître le mouvement effectif.

Développons maintenant les principales conséquences de ce principe fondamental, en commençant par les cas les plus simples.

Mouvement uniforme. — Considérons d'abord un point matériel en mouvement auquel aucune force n'est appliquée; s'il est animé d'une vitesse V, et qu'on le considére comme l'origine de trois axes rectangulaires (ou obliques) animés d'un mouvement de translation avec une vitesse égale à V, son mouvement par rapport à ces axes sera celui que tendraient à lui imprimer les forces qui agissent sur lui, c'est-à-dire sera nul, puisque ces forces n'existent pas.

Donc, le mouvement absolu du point se réduit, dans ce cas, au mouvement d'entraînement, c'est-à-dire qu'il est rectiligne, uniforme, et que sa vitesse est égale à V. Donc, tout point matériel en mouvement qui n'est soumis à l'action d'aucune force extérieure conserve sa vitesse en intensité et en direction. Ce résultat est tout à fait évident, et on l'admet généralement comme une conséquence de la loi de l'inertie.

Mouvement uniformément varié. — Supposons en second lieu un point matériel animé d'une vitesse v, et soumis à l'action d'une force F, dont l'intensité est constante, et dont la direction coïncide avec celle de la vitesse v.

Considérons toujours trois axes passant par la position qu'occupe le mobile à l'époque t, et se transportant parallèlement à cux-mêmes avec une vitesse égale à v (fig, 4). En même temps que l'origine de ces axes parcourt l'espace $\Lambda\Lambda'$, égal à vdt, le mobile s'écarte de cette origine, et le déplacement relatif ne diffère pas de celui qu'aurait déterminé la force Γ agissant sur le corps en repos. Soit donc Λ' M l'espace que la force ferait ainsi parcourir dans sa direction, laquelle est aussi celle de la vitesse v; le déplacement réel est la somme algébrique des déplacements $\Lambda\Lambda'$ et Λ' M. On voit que le mouvement ne cesse pas d'être rectiligne; seulement l'espace parcouru par le mobile pendant le temps dt est plus grand (algébriquement) que vdt, c'est-à-dire qu'il y a une certaine accélération.

On obtient la moitié de cette accélération en divisant par de le chemin A/M dù à la force F, et il est facile de reconnaître que l'accélération ainsi déterminée sera constante. En effet, transportons-nous à un autre instant du mouvement, l'origine aura une autre vitesse v', et dans le temps dt elle parcourra un espace v'dt; mais la force qui accélère le mouvement ayant un effet indépendant du mouvement déjà acquis fera parcourir au point matériel, dans le même temps dt, le même espace dans son mouvement relatif; donc on aura toujours la même accélération; le mouvement sera uniformément varié. Cette

deuxième conséquence se présente encore comme à peu près évidente.

Mouvement paraboliquer — Le corps animé d'une certaine vitesse v est soumis à l'action d'une force F constante en intensité et en direction (au moins pendent un temps très-court); mais la direction de la force diffère de celle de la vitesse (fig. 5).

Nous aurons toujours à considérer trois axes animés d'un mouvement de translation dont la vitesse sern ν en intensité et en direction.

Pendant le temps dt, l'origine, qui, à l'instant initial, coïncidait avec le point mobile, parcourra dans la direction de la vitesse un espace AA' = vdt; quant au mobile lui-même, il aura un mouvement relatif, lequel ne différera pas du mouvement absolu que lui aurait imprimé la force F, s'il avait été au repos; c'est-à-dire qu'il parcourra, pendant le temps dt, dans la direction de la force et avec une certaine accélération J un espace $A'M = \frac{1}{2} Jdr$. Le déplacement réel du point s'obtient en composant les deux déplacements AA' et A'M.

Prenons deux axes fixes ayant pour origine le point A, position du mobile à l'instant initial (fig. 5). Si ces axes ont pour directions, l'un Ax la direction de la vitesse v, l'autre Ay celle de la force F, les coordonnées du point mobile, au bout du temps infiniment petit que nous considérons, seront précisément les déplacements composants AA' et A'M; elles auront donc les valeurs respectives

$$x = vdt$$
, $\dot{y} = \frac{1}{2} \int dt^2$,

De ces équations, et des théories développées en Cinématique, on tire immédialement les conclusions suivantes :

Quand la force qui sollicite un point matériel en mouvement à une direction qui diffère de celle de la vitesse du point, 1ª Le mouvement est curviligne (*);

$$r = \frac{t}{2} J \frac{a^4}{b^3}$$

qu'en phileut en éliminant de entre les équations qui donneut æ et >.

2º Le plan osculateur de la trajectoire est celui qui contient à la fois la direction de la force et celle de la vitesse;

3º Cette mêma trajectoire est tangente à la ligne suivant

laquelle est dirigée la vitesse ;

4º Enfin, la droite qui représente la force fait connattre la direction de l'accélération totale du mouvement du point, et cette accélération totale ne diffère pas de l'accélération qui aurait été déterminée par l'action de la force sur le même point matériel pris au repos.

Ce dernier résultat est très-important : il nous donne la clef du rôle que joue dans la théorie géométrique du mouvement la notion de l'accélération totale. C'est cette grandeur, en effet, qui représente à elle seule l'effet total de la force, effet qui se manifeste à la fois par la substitution du mouvement curviligne au mouvement en ligne droite, et par celle du mouvement varié au mouvement uniforme.

Quand on a déterminé les lois du mouvement d'un point, soit par l'observation, soit par l'étude géométrique des liaisons de ce pointavec d'autres points dont le mouvement est connu, chaque théorème de Géométrie relatif à l'accélération totale nous fournira un théorème correspondant de Dynamique sur la force qui sollicite le mobile. Par exemple, on déduit de la loi des aires de Képler, et du raisonnement que nous avons emprunté à Newton (*), que la force qui sollicite une planète est constamment dirigée vers le centre du soleil. Nous compléterons ces notions quand la théorie de la mesure des forces nous aura fait convaltre la relation de grandeur existant entre l'accélération totale et la force dont l'action sur un point matériel donné détermine la production de cette accélération totale.

Mesure des forces.

Un point matériel M, animé d'une certaine vitesse v, est soumis à l'action de deux forces F et F', dont les directions comcident. En raisonnant comme précédemment, on voit que l'espace parcouru par la point M dans cette direction com-

^(*) La trajectoire se conford, aux infiniment pouts du troislème ordre prés, avec la parabole représentée par l'équation

^{(&}quot;) Tome In de cet ouvruge, p. 73.

mune, pendant le temps dt (indépendamment de l'espace vdt dù à la vitesse v pendant le même temps), est égal à

$$\frac{1}{2}jdt^3 + \frac{1}{2}j^4dt^3,$$

si $\frac{1}{2}jdt^i$ et $\frac{1}{2}j^idt^i$ représentent respectivement les espaces que chacune des forces F et F', agissant seule, nurait fait parcourir

au point dont nous nous occupons.

Ceci veut dire que, lorsque deux forces agissent sur un même point dans une même direction, les effets de ces forces s'ajoutent, l'accélération que prend le corps sous leur action combinée étant la somme algébrique j+j' des accélérations qui répondent à chacune des deux forces en particulier.

Or, on ne peut refuser d'admettre que, parmi toutes les forces existant dans la nature, il ne s'en trouve une qui, appliquée isolément au point matériel M, lui aurait imprimé aussi l'accélération j+j'. Cette force peut être substituée aux deux premières, en tant que résultat produit, c'est-à-dire qu'elle est capable de produire le même mouvement que les forces F et F' réunies.

On dit que cette force est la somme de F et de F', et on la représente par la notation

$$\mathbf{F} + \mathbf{F}'$$

Deux forces agissant dans une même direction peuvent être remplacées par une force unique égale à leur somme (*).

Proportionnalité des forces aux accélérations. — Il résulte de la définition précédente que : une force F produisant l'accélération j, la force » F produira l'accélération » j; par suite, la force » F répondra à l'accélération » j, et réciproquement. Donc :

Deux forces sont proportionnelles aux accélérations qu'elles impriment à un même point matériel. Cette propriété est indépendante de l'état de repos ou de mouvement du point considéré.

Nous nous trouvons maintenant en possession d'un moyen qui nous permet de mesurer une force, de la comparer à une force prise pour unité, et d'avoir ainsi l'expression numérique de ce que nous avons appelé l'intensité d'une force.

L'unité de force est le hilogramme : c'est le poids d'un décimètre cube d'eau distillée à la température de 4°,1, dans le vide, au niveau de la mer et à la latitude de Paris.

Notion de l'équilibre. — En général, on ne mesure pas les forces par les accélérations qu'elles produisent : on s'appuie, pour arriver à effectuer cette mesure d'une manière pratique, sur la propriété de l'équilibre.

Reprenons nos deux forces F et F', dont les directions sont les mêmes, et supposons qu'on ait

$$F = F'$$

c'est-à-dire

$$j=j'$$

et que d'ailleurs les sens dans lesquets ces deux forces agissent soient opposés : il résultera de leur action simultanée une accélération nulle, c'est-à-dire que, si le point était en repos, il y persistera malgré la présence des deux forces : on dit alors que ces deux forces se font équilibre, ou que le point est en équilibre sous l'action de deux forces égales et contraires.

Deux forces égales et contraires, appliquées à un point matériel en mouvement, n'altérent en rien ce mouvement, et l'on peut indifféremment, pour la commodité d'une démonstration, par exemple, introduire ou supprimer de pareils groupes de forces parmi celles qui agissent sur un corps en repos ou en mouvement, tout comme on introduit ou supprime deux termes égaux et de signes contraires dans les équations algébriques.

Toutes les fois que nous voyons un point matériel rester en repos, nous devons affirmer qu'il n'est soumis à aucune force, ou que si une certaine force agit sur lui, il y a d'autres forces qui font équilibre à celle-la.

Un corps abandonné à lui-même tombe sous l'action d'une certaine force qu'on appelle le poids de ce corps. Suspendons ce corps à un fil ou déposons-le sur un appul, il reste en re-

^(*) Cette phrase exprime identiquement la même idée que usus exprimione tout à l'hours, en disant que les effois de ces deux forces s'ajoutent.

pos. Il n'en est pas moins pesant, et la force qui le sollicitait tout à l'heure agit toujours sur lui; sendement elle est équilibrée par une autre force égale et contraire, qu'on appelle, suivant les cas, la tension du fil, ou la réaction de l'appui.

On dit quelquefois que deux forces qui se font équilibre se détruisent: c'est une expression vicieuse qui donne naissance à un grand nombre d'erreurs. Ainsi, quand un corps repose sur un appul, son poids ne produit pas de mouvement, mais il produit un autre effet. Il y a toujours déformation du corps et de l'appui. Cette déformation, qui est souvent insensible à l'œil, est quelquefois au contraire extrêmement marquée, comme dans le cas où le corps est suspendu à l'extrémité d'un ressort flexible. Dans ce cas, l'effet de la force est de maintenir le ressort courbé, malgré l'élasticité de la matière qui tend à le ramener à sa forme et à sa position première (fig. 2).

Les propriétés de l'équilibre fournissent le moyen le plus commode pour comparer et mesurer les forces. Deux forces, quels que soient leur nature physique et le nom sous lequel on les désigne, sont égales quand elles font équilibre à une même force. C'est ainsi que pour peser un corps, par exemple, nous pouvons le suspendre à l'extrémité du ressort de la fig. 2, et constater la flexion produite. Si nous cherchons ensuite combien il faut de décimètres cubes d'eau distillée pour arriver au même résultat, le nombre trouvé donnera l'expression du poids du corps en kilogrammes, puisque ce poids et le poids formé par ce nombre de kilogrammes font tous deux équilibre à une même réaction de ressort (*).

Il y a plus: tout autre effort développé, soit par la puissance musculaire d'un homme ou d'un animal, soit par le choc d'une veine liquide, d'un jet de gaz ou de vapeur, etc., qui aura encore pour conséquence une flexion égale, sera encore représenté par le même nombre de kilogrammes. Il existe une grande váriété d'appareils servant à mesurer les forces, mais ce que nous venons de dire suffit pour que l'on comprenne comment une force quelconque est susceptible d'être exprimée en kilogrammes.

Composition des forces. — Loi générale de l'équilibre d'un point. — Un point matériel A étant soumis à l'action de forces en nombre quelconque, considérons deux de ces forces (fig. 6).

La force F, si elle agissait seule, imprimerait au corps,

dans sa direction, une certaine accélération AB = j.

De même la force F' imprimerait su point une accélération AB' = j'; et, d'après notre deuxième principe, cette accélération j' est celle du mouvement du point A par rapport à trois axes animés d'un mouvement de translation avec une accélération égale à j. D'ailleurs, d'après la règle du parallélogramme des accélérations, l'accélération J de ce mouvement résultant sera représentée par la diagonale du parallélogramme construit sur les accélérations AD, AD'des mouvements composants. Si au lieu des deux forces F et F' on avait une force unique dirigée suivant la diagonale AC, et capable de produire l'accélération J, le mouvement du point serait le même. On peut donc remplacer deux forces appliquées à un même point par une troisième qui sera la résultante de deux autres; on obtiendrait cette résultante en grandeur et en direction par la règle du parallélogramme, puisque les forces sont proportionnelles aux accélérations des mouvements qu'elles produisent. On peut donc, au lieu de composer les mouvements produits par chaque force prise isolément, composer ces forces ellesmêmes, et déterminer directement ensuite le mouvement résultant.

Ces deux manières de procèder paraissent au premier abord tout à fait équivalentes; mais si elles conduisent au même résultat final, il y a pour ainsi dire tout un ablme entre la règle géométrique évidente de la composition des mouvements et le théorème fondamental que nous venons de démontrer, et qui nous permet de trouver la résultante de deux forces appliquées à un même point matériel.

Equilibre d'un point matériel.

Observons que ce théorème, en nous indiquant quelle est la force qui peut remplacer deux forces quelconques appliquées à un même point, nous fait connaître par cela même la

^(*) Tout sect suppose, bian entenda, que l'élasticité du ressort n'aura pas auti de changunesit dans l'Intervalle des deux expériences.

force unique capable de faire équilibre à ces deux forces. Nous voyons qu'on peut arriver à ce résultat sans employer deux forces respectivement égales et contraires aux forces données; il suffit d'appliquer au point une force égale et contraire à la résultante de ces deux forces.

Et de même, si l'on a un nombre quelconque de forces appliquées à un même point, on peut les remplacer par la force représentée par la ligne qui ferme le polygone des forces données; et la condition nécessaire et suffisante pour l'équilibre de ces forces est que le polygone soit fermé.

Telle est la loi générale de l'équilibre d'un point matériel, ct toute la Statique découle aisément de cette proposition fondamentale, proposition dont l'importance est égale au point de vue de la théorie du mouvement, comme au point de vue de la théorie de l'équilibre (*).

On détermine analytiquement la grandeur et la direction de

CHAP. I. — PRINCIPES FONDAMENTAUX DE LA STATIQUE, ETC. 17 la résultante R d'un groupe de forces représentées d'une munière générale par F, au moyen des équations

$$\begin{split} & \operatorname{R} \cos \overline{R}, \, \overline{x} = \sum \operatorname{F} \cos \overline{F}, \, \overline{x}, \\ & \operatorname{R} \cos \overline{R}, \, \overline{y} = \sum \operatorname{F} \cos \overline{F}, \, \overline{y}, \\ & \operatorname{R} \cos \overline{R}, \, \overline{z} = \sum \operatorname{F} \cos \overline{F}, \, \overline{z}. \end{split}$$

Remarque. — Il suit de ce qu'on vient de dire que si à un système quelconque de lorces nous en ajoutons une autre égala et opposée à leur résultante, nous produirons l'équilibre.

En effet, on a un polygone OABCD (fig. 7), formé par les forces mises bout à bout; la résultante est représentée en grandeur et en direction par OD; si nous ajoutions une force égale, mais dirigée de D vers O, le polygone des forces serait fermé, la résultante scrait nulle; les forces sa feraient donc équilibre.

Pour exprimer qu'un point est en équilibre sous l'action d'un nombre quelconque de forces, il faut donc exprimer que le polygone des forces est fermé; ainsi ces conditions d'équilibre sont évidenment

$$\sum_{i} F \cos \overline{F_{i} \cdot x} = a_{i}$$

$$\sum_{i} F \cos \overline{F_{i} \cdot x} = a_{i}$$

$$\sum_{i} F \cos \overline{F_{i} \cdot x} = a_{i}$$

§ II. — DEFINITION DE LA MASSE.

On a vu que les forces sont proportionnelles nux accélérations qu'elles impriment à un même point matériel; donc, pour un point matériel quelconque, nous aurons une équation de la forme

$$F = mj$$

m étant un coefficient constant. Ce coefficient varie d'ailleurs quand on passe d'un point matériel à un autre; sa valeur nu-

^(*) Si l'on se place exclusivement à ce dernier point de vue, on peut reprecher à la démonstration que nous venues de donner, et qui est due à Newton, de faire intervenir la considération étrangère du mouvement dans la théorie de l'équilibre. Aussi exite démonstration a-t-ella été fort critiquée, et remplacée par plusieurs autres fondées sur les constructions géométriques et les artilices analytiques les plus variés.

Jean Bernoulli dit dans le quatrième volume de ces Opurcules, p. 256 :

Pescant, qui compositionem virium cum compositione motuum confundant.

Je suis tout à fait de l'avis de Jean Bernoulli, et il y a, comma je l'al dit, un abime cotre ces deux choses. C'est même un fait digne de toute notre attention que la manière dont cet abime se trouve lestement franchi, sans qu'on s'en eperçoive, pour ainsi dire, si l'on n'y prend pas garde. C'est l'exemple le plus curienx que je connaisse du passage d'un ordre d'idées à un autre tout à fait différent, d'une vérité géométrique évidente à un théorème de Statique fort difficile à démontrer directement, théorème qu'il est peut-être impossible de démontrer sans introduire d'une manière plus en moins déguisée des hypothèses qui rentrent au fond dans notre grande les fondamentale de l'indépandance et de la composition des effets des forces.

La démonstration de Newton nous semide a la fois la plus simple et la plus uniurelle. N'est-il pas évident que l'esprit ne peut se contenter d'une demonstration artificielle, quand il s'agit de propositions qui ont cotte importance (andamentale? » Il faut que les principes sur lesquels une science tout entière repeas se démontrant simplement on qu'ils ne se démontrant pas du tout; et l'esprit ne se flatte pas d'avoir saisi l'ordre naturel suivant lequal les vérites s'enchaigent, tout qu'une vérité bien générale n'est établie qu'à la faveur de constructions et d'artifices três-particuliers. « (Consev. de., p. 145.)

mérique dépend à la fois de l'unité de force et de l'unité de longueur; mais ces unités une fois choisies. F et j sont représentées par des nombres, et alors la valeur numérique de m est déterminée.

Les corps, même supposés réduits à de simples points matériels, ne doivent pas être regardés comme identiques les uns aux autres, au point de vue des effets qu'ils éprouvent de la part des forces qui leur sont appliquées. Il existe dans les corps une qualité en vertu de laquelle ils diffèrent les uns des autres au point de vue mécanique, et dont on reconnaît l'existence par les accélérations plus ou moins grandes qu'ils éprouvent de la part d'une même force, c'est-à-dire par les différentes valeurs que prend, pour différents corps, le coefficient m de l'équation $\mathbf{F} = m\hat{\mathbf{j}}$.

Cette qualité est ce qu'on nomme la masse; et l'on dit que deux corps, quelle que soit leur nature chimique, ont la même masse, lorsque, soumis à l'influence d'une même force, ils acquièrent des vitesses égales dans des temps égaux.

Il est naturel de dire que deux corps ont des masses doubles, triples, etc., l'une de l'autre, s'ils exigent des forces doubles, triples, etc., pour prendre une accélération déterminée. Or, ceci revient à considérer les masses des corps comme proportionnelles aux quotients \(\frac{F}{J} \) d'une force par l'accélération qu'elle leur imprime. Enfin, on est convenu de prendre ce quotient, c'est-à-dire le nombre m, pour la valeur même de la masse; c'est-à-dire qu'on appelle masse le coefficient m, constant pour un même corps délini par l'équation

$$F = mj$$
.

La masse ne constitue pas une résistance au mouvement. Théoriquement, la plus petite force appliquée à un point matériel libre le mettra toujours en mouvement; seulement, le mouvement sera toujours plus ou moins lent, selon que la masse sera plus ou moins grande. On se fait une idée de ce que c'est que la masse en se reportant à la théorie de la chaleur; un corps quelconque ne repousse pas complétement la chalcur; seulement, il s'échauffe plus ou moins, selon sa nature, tout comme un corps soumis à l'action d'une force

CHAP. 1. — PRINCIPES FONDAMENTAUX DE LA STATIQUE, ETC. 19 prend une accélération plus ou moins grande, en raison de la grandeur de sa masse.

En Statique, où l'en considère seulement des corps en équilibre sous l'action des forces qui leur sont appliquées, la considération de la masse ne s'introduit pas.

Il n'y a pas d'unité de masse, pas plus qu'il n'y a d'unité de vitesse. Dans l'équation

$$F = mj$$

la valeur numérique du coefficient m est déterminée quand on a les valeurs de F et de j; elle dépend donc à la fois de l'unité de l'orce et de l'unité de longueur, le rapport de deux masses étant toutefois indépendant de ces deux unités.

En Astronomie, on a l'habitude de rapporter toutes les masses à la masse du soleil prise pour unité, ce qui semble en contradiction avec ce que nous venons de dire. Mais alors il faut remarquer que les forces ne sont plus exprimées en kilogrammes : elles ne peuvent même pas être rapportées à aucune unité particulière; ce sont de simples coefficients numériques dont la valeur est donnée par l'équation

$$\mathbf{F} = mj$$
.

Désignons par P le poids d'un corps; l'expérience a montré qu'avec certaines restrictions physiques, ce poids communique au corps une accélération g, constante dans un même lieu pour tous les corps. L'équation générale devient alors

$$P = mg$$

g étant une constante dont la valeur à la latitude de Paris et au niveau de la mer a été trouvée égule à 9,8088.

Donc la masse d'un corps est proportionnelle à son poids (*).

^(*) Cesi va nous permettre de comprendre la raison pour laquelle en définit quelquelois la masse la quantité de matière qui se trouve dans un copps.

Nous venous de voir que le poids est proportionnel à la masse; nous avous défini la matière : ce qui persiste d'un corps quand il a perdu toutes les propriétés qui le constitusient comme corps. Or, l'expérience montre que, qualles que soient les transformations, soit physiques, soit chimiques, que l'on peut faire subir à un corps, son poids reste constant; il est donc naturel de regardes le

Toutefois, il faut blen se garder de confondre le poids avec la masse. En offet, le poids varie avec une foule de circonstances physiques; mais la valeur de g varie dans les mêmes circonstances, de sorte que le quotient $\frac{P}{g}$ reste constant.

Il nous est facile actuellement de calculer l'accélération que prend, sous l'influence d'une force donnée, un corps assez petit pour qu'on puisse l'assimiler à un point matériel. En effet, le poids de ce corps, divisé par g, fera connaître sa masse m; et l'on obtiendra ensuite l'accélération cherchée en divisant par m le nombre de kilogrammes qui mesure la force.

§ III. - DE TRAVAIL DES FORCES.

Considérons une force F, appliquée à un point matériel A (fig. 8), et supposons que, sous l'action de cette force (*), le point A ait parcoura dans le temps dt un arc infiniment petit AA', que nous représenterons par ds.

Dévinion. — On appelle travail élémentaire de la force F correspondant au déplacement AA' de son point d'application le produit de la force par le chemin purcouru, projeté sur la direction de cette force.

Cette définition se traduit analytiquement par l'équation

(1)
$$dATF = F ds \cos F, ds.$$

poids comme proportionnel à la quantité de matière qui existe dans le corps. En y regardant d'un peu plus près, on voit que la masse, plutêt que le puids, doit être regardée comme proportionnelle à la quantité de matière; un effet, le poids est une quantité tent à fait contingente, qui varie suivant le lieu sû l'on se trouve; le masse, su contraire, reste rigourensement et absolument constante dans toutes lés circonstantess.

(*) Il serait suverainement inexact de dire que le déplacement du point d'application a lieu en vertu de l'action de la force. L'espace parcouru par un point mobile pandant le temps de « pane expression » de : il est uniquament dà à la vitesse acquise en verte des causes qui ent agi antérieurement à l'époque que l'ou considére. Quand plusieurs forces agissent simultanément sur un même point matériel, les travant de cus forces sont des quantités absolument indépendantes l'une de l'autre.

CHAP. I. - PRINCIPES FONDAMENTAUX DE LA STATIQUE, ETC. 21

Le travail d'une force est positif ou négatif, suivant le signe du cosinos qui figure dans le second membre de l'équation (1). L'usage a consacré les dénominations de travail moteur, pour désigner un travail positif, c'est-à-dire le travail d'une force qui fait un angle aigu avec la direction de la vitesse de son point d'application; et de travail résistant, pour désigner le travail négatif qui fait un angle obtus avec la direction de cette même vitesse.

Nous aurous à justifier plus tard l'introduction dans le langage mathématique de toutes ces expressions empruntées au Dictionnaire des Économistes. La notion du travail est une donnée tout à foit fondamentale dans la Mécanique appliquée; comme elle Implique nécessairement l'idée de mouvement, elle peut sembler étrangère à la Statique. Nous verrons pourtant que la considération du travail est la base d'un principe ou théorème célèbre, dont l'introduction dans la science de l'équilibre date de l'époque de Galilée, et sur lequel Lagrange a établi le fondement de toute la Statique.

C'est pourquoi nous avons du définir des à présent le travail comme une quantité purement géométrique, comme le produit d'une force par une longueur. Les théorèmes suivants résultent immédiatement de la définition du travail.

Theorem 1. — Le travail de la résultante d'un nombre quelconque de forces agissant sur un point matériel en mouvement est égal à la somme des travaux des composantes.

(PONCELET.)

En effet, la projection de la résultante sur une direction quelconque est égale à la somme des projections des composantes sur la même direction. Projetons sur la direction du chemin parcouru, nous aurons

It
$$\cos R$$
, $ds = \sum F \cos \overline{F}$, ds ,

Multiplions les deux membres de cette équation par le déplacement ds, il vient, en ayant égard à l'équation (1).

(2)
$$d.TR = \sum d.TF$$
.

Dans les applications du calcul à la Mécanique, les forces

22

sont toujours définies par leurs projections sur trois axes rectangulaires, ainsi que par les coordonnées x, y, z de leurs points d'application.

Solent X, Y, Z les composantes d'une force F sur trois axes rectangulaires, la somme des travaux de ces trois composantes

sera évidemment

$$X ds \cos x, ds + Y ds \cos y, ds + Z ds \cos z, ds.$$

Or.

 $ds \cos \overline{x}, ds = dx, ds \cos \overline{y}, ds = dy, ds \cos \overline{z}, ds = dz,$ done

(3)
$$d\mathbf{T}\mathbf{F} = \mathbf{X}dx + \mathbf{Y}dy + \mathbf{Z}dz.$$

Considérons maintenant le déplacement ds comme résultant de plusieurs déplacements $d\sigma$, $d\sigma'$; cette décomposition donne lieu au théorème suivant:

Throntma II. — Le travail d'une force quelconque F, pour le déplacement ds, est égal à la somme des travaux de cette force correspondants aux déplacements composants da, do,

Projetons en effet les déplacements composants et le déplacement résultant sur la direction de la force, nous aurons

$$ds \cos \overline{F}, ds = \sum d\sigma \cos \overline{F}, d\sigma;$$

en multipliant par F, on démontre le théorème énoncé.

Théorie géométrique des moments.

Travail des forces dans le mouvement de rotation. — Considérons en particulier une force dont le point d'application M tourne autour d'un axe fixe O (fig. 9). Soit P la projection de la force sur un plan perpendiculaire à l'axe O, et choisi de manière que le mouvement du point M s'effectue dans le mêtne sens que la rotation des aiguilles d'une montre; l'espace parcouru dans le temps dt est un arc MM' dirigé à peu près suivant la perpendiculaire à OM. On a

$$MM' = rd \alpha$$

chap. 1. — Principes Fondamentaux de la Statique, etc. 23 en désignant OM par r et MOM' par de. Pour avoir le travail de la force, il faut projeter celle-ci dans la direction MA: cette projection est le produit de P par le cosinus de l'angle φ , compris entre les directions MP et MM' ou MP et MA, et l'on a

$$d.TF = rd\alpha P \cos \varphi$$
.

Abaissons du point O une perpendiculaire OB sur la direction de P, et appelons p cette perpendiculaire, dont l'angle avec OM est précisément égal à φ , on a

$$r\cos\varphi = p;$$

donc, le travail de la force a également pour expression

$$(4) d.TF = Pp.d\alpha.$$

Le produit Pp s'appelle le moment de la force par rapport à l'axe de rotation, et l'équation précèdente s'énonce :

Theonem III. — Le travail d'une force dont le point d'application tourne autour d'un axe fixe est le produit du déplacement angulaire par le moment de la force par rapport à l'axe de rotation.

On appelle moment d'une force par rapport à un axe, le produit de la projection de cette force sur un plan perpendiculaire à l'axe, par la plus courte distance de la force et de l'axe; on représente le moment d'une force F, par rapport à un axe O, par la notation M.F; on a alors

$$M_a F = Pp$$

Si 8 est l'angle de la force avec l'axe, on a

$$P = F \sin \theta,$$

$$M_a F = F \rho \sin \theta.$$

Le moment est nul quand p ou 0 sont nuls, c'est-à-dire quand la force rencontre l'axe ou qu'elle lui est parallèle; en un mot, quand la force et l'axe sont dans un même plan-

Pour que l'équation

$$d$$
, TF = M_o F $d\alpha$

soit générale, il faut donner un signe au moment; or, $d\alpha$ est positif; le signe de M_a F doit donc toujours être le même que

celui de d.TF. Or, si l'angle φ est aigu, d.TF est positif, et la force, si elle agissait seule, tendrait à faire tourner le point dans le sens positif; si φ est obtus, d.TF est négatif, et la force tend à faire tourner le point M dans le sens négatif; donc, enfinte moment de la force sera positif ou négatif, selon que la force tendra à faire tourner le point dans le sens positif ou dans

le sens négatif.

Axe représentatif d'un moment. — Le moment d'une force peut être représente par une longueur portée sur l'axe, dans un sens ou dans l'autre, selon que le moment est positif ou négatif, mais toujours de manière qu'en se plaçant sur cet axe à la manière de Poinsot ou d'Ampère, on voie la force tendre à faire tourner son point d'application dans le sens de la rotation des aiguilles d'une montre, sens qui est notre sens positif.

Theorems de Varianon. - De l'équation

$$d.TF = M_a F d\alpha$$
,

on déduit un théorème célèbre dû à Varignon, Nous avons démontré que le travail d'une résultante est égal à la somme des travaux des composantes; or, les travaux de diverses forces appliquées à un même point sont proportionnels à leurs moments; donc :

Taxontus IV (théorème de Varignon). — Le moment d'une résultante par rapport à un axe est égal à la somme des moments des composantes par rapport au même axe.

Cherchons les expressions algébriques des moments respectifs d'une force par rapport à trois axes rectangulaires.

Soient F une force quelconque (fig. 10), X, Y, Z ses composantes sur les trois axes, et x, y, z les coordonnées de son point d'application. Cherchons d'abord le moment de cetter force par rapport à l'axe des x. Si je désigne ce moment par I., nous aurons évidemment

Nous aurons de même, en désignant par M et N les moments respectifs de F par rapport à l'axe des y et à l'axe des z,

$$M = X z - Z x$$

$$N = Y x - X y.$$

Trouvons enfin le moment G de la force par rapport à une droite quelconque OU déterminée par les angles λ, μ, ν , qu'elle fait avec les trois axes coordonnés. Soit $d \approx$ le déplacement angulaire autour de cette droite : on peut regarder ce déplacement comme résultant des déplacements simultanés

parallèles respectivement aux trois axes coordonnés.

Exprimons que le travail de la résultante pour un mouvement résultant est égal à la somme des travaux de cette forcepour chacun des mouvements composants, nous aurons

$$\mathbf{G} \, d\alpha = \mathbf{L} \, d\alpha \cos \lambda + \mathbf{M} \, d\alpha \cos \mu + \mathbf{N} \, d\alpha \cos \nu,$$
 ou, en supprimant le facteur commun $d\alpha$,

(5)
$$G = L \cos \lambda + M \cos \mu + N \cos \nu.$$

Projections des moments. — Considérons les axes représentatifs des moments L, M, N, G, c'est-à-dire portons sur les droites Ox, Oy, Oz, OU des longueurs respectivement égales aux moments correspondants, et cherchons le lieu des points ainsi déterminés. Il faut faire dans l'équation (5), x_i, y_i, z, étant les coordonnées courantes d'un point du lieu,

(6)
$$G = \sqrt{x_1^2 + y_1^2 + z_1^2},$$

$$\cos \lambda = \frac{x_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}},$$

$$\cos \mu = \frac{y_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}},$$

$$\cos \nu = \frac{z_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}}.$$

La substitution de ces valeurs donne

(7)
$$x_1^2 + y_2^2 + z_3^2 = Lx_3 + My_1 + Nz_3$$

Le lieu cherché est donc une sphére qui passe par l'origine, où elle est tangente au plan conduit par cette origine et par la direction de la force F. En effet, l'équation du plan tangent au point $(x_1 = 0, y_1 = 0, z_1 = 0)$ est

$$Lx_1 + My_1 + Nz_1 = 0,$$

et ce plan contient à la fois le rayon vecteur OM et la parallèle à la force F menée par l'origine. Le moment est nul par rapport à une droite quelconque contenue dans ce plan.

Le même moment atteint au contraire son maximum, représenté par le diamètre de la sphère, autour d'une perpendiculaire au plan dont nous venons de parler. Ce maximum, égal au produit de la force par sa distance à l'origine, s'appelle le moment de la force par rapport au point O. Le moment relatif à un axe quelconque est la projection sur cet axe du diamètre de la sphère, c'est-à-dire du moment maximum ou du moment relatif à l'origine.

§ IV. - NOTIONS SUR LA CONSTITUTION DES CORPS NATURELS.

Pour terminer ce chapitre, consacré aux notions préliminaires, et avant d'entrer dans le détail de la recherche des conditions d'équilibre d'un point matériel, ou d'un corps quelconque placé dans des conditions déterminées, exposons avec précision la manière dont nous comprenons la constitution intime des corps de la nature.

Si l'on se reporte à notre définition du point matériel, on aura le droit de dire en toute rigueur, en renversant cette définition, qu'un corps quelconque est composé d'une infinité de points matériels infiniment petits. Qu'ils soient isolés, qu'ils soient en contact, peu nous importe; mais puisqu'ils forment un corps, ces points ne sont pas libres, indépendants les uns des autres; il se développe entre eux des actions mutuelles qui suivent des lois que nous ne connaissons pas et que nous ne pouvons pas connaître. Nous introduirons ces actions dans nos raisonnements, et nous considérerons que les points matériels sont en équilibre sous l'effet combiné des forces données et de ces actions inconnues.

On peut êtra tenté de confondre nos points matériels avec les molécules des physiciens; c'est là une erreur contre laquelle il faut se mettre en garde. Si les corps sont composés de mo-lécules, nous sommes obligés d'admettre que les d'imensions, la forme et la disposition de celles-ci doivent influer sur les propriétés des corps : le seul phénomène de la cristallisation rend ce fait indubitable. Il n'y a donc aucun rapport possible

entre les molécules, telles que les physiciens les conçoivent, et nos points matériels, qui n'ont, eux, ni dimensions, ni formes spéciales. Les molécules, si elles existent, sont des assembla-

ges de points matériels.

Enfin, ce qui est un point assez important, l'existence des molécules est encore une chose tout à fait hypothétique, qui peut être commode pour relier entre elles diverses théories physiques, tandis que nous énonçons une vérité tout à fait incontestable quand, après avoir défini point matériel ce qu'on obtient en divisant un corps, nous disons qu'on reconstitue le corps en en réunissant à posteriori toutes les parties.

Or, toutes les fois que nous sommes obligés de recourir à une hypothèse, nous avons soin de la mettre nettement en évidence; et il est juste aussi de montrer, d'un autre côté, ce qui

découle rigoureusement de nos définitions.

L'ai dit que nous ne savions absolument rien sur le mode de liaison, d'assemblage, pour ainsi dire, qui constitue un corps physique au moyen des éléments que nous nommons points matériels. Il ne nous est pourtant pas possible d'aborder la Mécanique proprement dite sans avoir quelque idée à ce sujet, c'est-à-dire sans faire quelques hypothèses, sans poser quelque principe analogue à ceux qui nous ont servi à résoudre les problèmes qui se rapportent au point matériel.

Une seule de ces hypothèses se rencontre dans la Mécanique rotionnelle : elle constitue le troisième principe fondamental dont nous avons parlé, principe qui a été introduit dans

la science par Newton.

Troisière runcipe. — Égalité de l'action et de la réaction. — Ce principe suppose d'abord que toute force réellement, physiquement existante (par opposition avec les forces fictives telles que les résultantes, les projections, et autres forces du même genre que nous avons introduites uniquement pour la commodité du raisonnement), toute force donc, réellement existante, non-seulement est subie par un point matériel, mais encore est nécessairement due à l'existence d'un autre point matériel, qui peut être considéré comme exerçant sur le premier la force dont il est question. Or, le principe dont il s'agit consiste en ce que :

Si un point matériel M reçoit d'un autre point matériel M' une vertaine action f; réciproquement, le point M' reçoit de M une action égale et contraire f', qu'on appelle la réaction du point M'.

Distinction des forces extérieures et des forces intérieures.

— Il suit de là que dans chaque système de points matériels que nous étudierons, il faudra considérer deux genres de forces : celles que nous appellerons forces intérieures, et les forces extérieures.

Soit A un point du système que nous étudions. B un point qui agit sur loi; si B appartient également à notre système motériel, la force qu'il exerce sur le point A est one force intérieure; nous la désignerons par une petite lettre. Si le point B ne fait pas partie du système dont nous nous occupons, cette force qui émane do point B est une force extérieure au système, et nous la représenterons par une grande lettre.

Les forces extérieures et les forces intérieures ne différent évidemment pas dans leur essence; elles ne différent que par la manière dont elles figurent dans nos misonnements et nos calculs.

Une même force peut jouer, tantôt le rôle de force intérieure, tantôt le rôle de force extérieure, suivant les cas. Si l'on considére, par exemple, le mouvement d'un corps qui tombe à la surface de la terre, l'attraction qu'une des molécules de ce corps éprouve de la part d'une molécule quelconque de la terre est une force extérieure; si, au contraire, on considére le mouvement d'un système matériel formé de la terre tout entière et des corps qui se trouvent à sa surface et dans son voisinage, la même attraction devient une force intérieure.

Il est clair, d'après le principe de l'égalité de l'action et de la réaction, que si l'on prend, parmi les forces qui agissent sur les divers points d'un système matériel, toutes celles qui sont des forces intérieures, ces forces sont égales deux à deux et opposées. Il existe bien une force égale et opposée à chacune des forces extérieures, mais nous n'avons pas à nous occuper de cette force, puisqu'elle n'est pas appliquée à l'un des points dont nous étudions le mouvement ou l'équilibre.

Il arrive que dans certaines équations, où l'on considère l'ensemble de toutes les forces agissant sur un système matériel, les forces intérieures disparaissent, parce que les deux forces jumelles, qui ne vont pas l'une sans l'autre, d'après notre définition des forces intérieures, introduisent dans ces équations des termes égoux en valeur absolue et de signes contraires.

Par exemple, on reconnaît aisément que :

to La somme des projections sur un axe quelconque de deux forces intérieures conjuguées est identiquement nulle.

2º La somme des moments de deux pareilles forces autour d'ése droite quelconque est identiquement nulle.

En effet, la projection ou le moment d'une force est une quantité qui change de signe avec le sens de la force, et qui ne dépend nullement de la position du point d'application de la force, sur la droite qui en représente la direction.

Travaux des forces intérieures, — Au contraire, la somme des travaux des forces intérieures est susceptible d'une expression remorquable, dont nous ferons fréquenment usage.

Soient M et M' (fig. 11) deux points matériels agissant l'un sur l'autre, je suppose, par répulsion; soit f'l'action, égale à la réaction. Supposons que les points M et M' se soient déplacés d'une manière quelconque et soient venus, le premier en M., le second en M., La somme des travaux des deux forces sera

$$f(M'P'-MP)$$
,

P' et P étant les projections des points M, et M', sur la direction MM'; cette somme sera encoré représentée par

$$f(PP'-MM')$$
.

Or M, M', et PP' ne différent que d'un infiniment petit de deuxième ordre; nous pouvons donc, dans l'expression précédente, remplacer PP' par M, M',, et alors le coefficient de f devient

$$M_1M'_1 - MM' = dr_1$$

en désignant par r la longueur MM'. On aura donc pour la somme des travaux f'dr.

La même expression représentera aussi bien le travail, dans

CHAP. 1. - PRINCIPES FONDAMENTAUX DE LA STATIQUE, ETC. 31

le cas d'une force attractive, en convenant de regarder les attractions comme négatives, les répulsions étant positives.

Des solides invariables. — Si nos deux points M, M' se sont déplacés sans que leur distance ait changé (comme cela aumit lieu si ces points faisaient partie d'un système absolument invariable de forme, tel que ceux dont nous avons étudié le mouvement géométrique dans la première Section de cet ouvrage), on a

dr = 0;

par conséquent la somme fdr des travaux des actions mutuelles de ces deux points est nulle.

Il suit de là que, dans tout déplacement commun qui n'altère pas les distances mutuelles des points d'un système quelconque, les forces intérieures ne figurent pas dans la somme des travaux des forces agissant sur tous les points du système : ce qui tient à ce que ces forces introduisent dans cette somme des termes qui sont deux à deux égaux et de signes contraires, et qui se détruisent algébriquement.

Il s'attache un très-grand intérêt aux équations qui sont indépendantes des actions intérieures, vu notre ignorance au sujet de ces forces : aussi a-t-on l'habitude en Mécanique de distinguer soigneusement les systèmes qu'on suppose absolument invariables de formes, c'est-à-dire composés de points matériels qui ne peuvent en aucune façon s'approcher ou s'éloigner les uns des autres; c'est à un pareil système que nous donnons le nom de solide invariable.

Cette invariabilité absolue de forme d'un système matériel ne se rencontre pas dans la nature. Il existe, il est vrai, un grand nombre de corps solides qui semblent ne pas éprouver de changement de forme, de quelque manière qu'on cherche à agir sur eux, pourvu toutefois que les forces qu'on leur applique ne dépassent pas de certaines limites; mais si ces corps paraissent conserver lu figure qu'ils avaient d'abord, c'est que les déforgations qu'ils ont subies sont trop petites pour que nous puissions les apercevoir; elles n'en existent pas moins et se manifestent dans les machines par des pertes de travail et des usures de matériaux.

Pour distinguer ces corps des premiers, nous leur donnerons le nom de solides naturels.

Un mode de ralsonnement que nous emploierons souvent en Statique est celui-ci: Pour trouver les conditions d'équilibre d'un corps naturel quelconque, solide, liquide, d'un cordon, d'un système articulé, nous supposerons l'équilibre établi, et dès lors nous pourrons, sons troubler cet équilibre, concevoir que le corps devienne rigoureusement invariable. Donc, si l'on cherche les conditions pour que l'équilibre ait lieu en supposant ce corps rigide, ces conditions devront être nécessairement remplies pour l'équilibre du corps, après que nous lui aurons rendu la possibilité de subir certaines déformations. Semement, en général, ces conditions ne seront plus alors suffisantes.

De l'élasticité. — Il faudra donc, après avoir établi les conditions qui seraient suffisantes pour l'équilibre si le corps était rigoureusement invariable, faire une deuxième étude plus soignée, et voir comment les corps naturels peuvent se déformer sous l'influence des efforts auxquels ils doivent se trouver soumis dans nos machines ou nos constructions. Ce nouvel ordre de questions est du domaine de l'expérience.

C'est l'expérience qui nous apprend que les solides naturels présentent, pour la plupart, la propriété connue sous le nom d'élasticité, en vertu de laquelle ils reprennent leur forme primitive, quand, par un certain effort, on les a déformés. Nous aurons donc une seconde approximation en tenant compte de cette propriété; d'ailleurs, pour avoir des hypothèses nettes et précises, nous considérerons deux cas limites, celui d'un corps doué d'une élasticité parfaite, et celui d'un corps complétement dénué d'élasticité.

C'est encore à l'expérience qu'il fautre faire appel pour savoir dans quels cas nous pourrons appliquer aux corps naturels les résultats de ces nouvelles recherches qui reposent encore sur de pures abstractions. Ainsi, pour un corps solide déterminé, nous reconnaîtrons que sous l'influence d'efforts qui ne dépassent pas une certaine limite, l'élasticité peut être, sons erreur appréciable, considérée comme parfaite; au delà, on ne peut plus compter que le corps revienne à son état primitif, c'est à un autre corps qu'on aura affaire. Les forces con-

CHAPITHE II. - EQUILIBRE D'UN POINT MATÉRIEL.

33

tinuant à augmenter à partir de cette limite, le corps finira par se briser. Nous déterminerons avec soin cette limite, qu'on appelle limite d'électicité, et nous saurons ainst que tant que nous ne la dépasserons pas, nous pourrons appliquer sans crainte les résultats que la théorie nous a donnés pour ce cas idéal.

Si certaines pièces de muchines, certaines parties de nos constructions se trouvent soumises à des efforts dépassant la limite d'élasticité de la matière, il sera sage de changer les dispositions employées, afin de rentrer dans le cas normal.

CHAPITRE II.

ÉQUILIBRE D'UN POINT MATÉRIEL.

§ V. — EQUILIBRE D'UN POINT MATÉRIEL LIBRE. — ÉQUILIBRE D'UN POINT QUI N'EST PAS ABSOLUMENT LIBRE.

La Statique est la science de l'équilibre des forces.

Nous allons d'abord considérer le cas où un corps réduit à un simple point matériel est sollicité par des forces quelconques; et nous chercherons quelles sont les conditions qui doivent être satisfaites pour que ces forces se fassent équilibre. Ces conditions étant supposées remplies, le corps restera en repos, s'il est en repos; ou, s'il est en mouvement sous l'action d'autres forces, le mouvement continuera comme si celles qui se font équilibre n'existaient pas.

Cette première partie de la Statique est extrêmement simple; et il n'y a absolument rien à ajouter aux notions qui précèdent, pour avoir la théòrie complète de l'équilibre d'un point matériel. En effet, tant de forces que l'on voudra, agissant sur un point matériel, ont une résultante, c'est-à-dire qu'il existe une force unique capable de les remplacer toutes. Pour l'équilibre, il faut que cette résultante, qui est représentée par une longueur, soit nulle; or, pour qu'une longueur soit nulle, il faut et il suffit que ses projections sur trois axes rectangulaires soient nulles séparément : nous traduirons donc les conditions de l'équilibre en écrivant

$$\sum F \cos \overline{F, x} = a$$
, $\sum F \cos \overline{F, y} = a$, $\sum F \cos \overline{F, z} = a$,

ou, d'après nos notations

(1)
$$X = 0, Y = 0, Z = 0,$$

Telles sont les équations nécessaires et suffisantes pour qu'un point matériel libre soit en équilibre.

II.

2

CHAPITRE II. - ÉQUILIBRE D'UN POINT MATÉRIEL.

35

Il peut se faire que le point dont ou cherche les conditions d'équilibre ne soit pas libre de se mouvoir d'une manière quelconque dans l'espace, c'est-à-dire que ses coordonnées ne
puissent pas prendre toutes les valeurs possibles. Les déplacements de ce point étant soumis à certaines conditions, si la
résultante des forces qui agissent sur lui tend à lui faire prendre
un mouvement incompatible avec ces conditions, le point
restern en repos, absolument comme si cette résultante était
nulle.

L'effet de la force sera alors simplement, comme on dit, de tendre les liens du système, expression déduite des cas analogues à ceux où l'on a, par exemple, un corps suspendu à un ill et soumis à une force agissant dans le prolongement du fil.

En général, quand un corps est gêné dans ses mouvements par d'autres corps, et qu'il reste en équilibre malgré l'action d'une force, l'effet de cette force se reporte sur les corps qui s'opposent à certains mouvements : elle produit ce qu'on appelle la charge des appuis ou la tension des liens.

Dans la Mécanique rationnelle, on ne tient pas compte de la nature physique des liens, appuls, etc. On traduit en Algèbre, et on exprime par des équations (dites équations de liaison) les conditions qui résultent de la présence de ces appuis fixes ou mobiles; et l'on suppose ainsi que ces appuis sont doués de toute l'inflexibilité d'une équation algébrique. Protiquement, il est indispensable de calculer les charges des appuis et de s'assurer, en ayant égard à lour nature réelle, qu'ils peuvent résister aux efforts qu'ils ont à supporter.

§ VI. — Equilibre D'UN POINT ASSUJETTI A RESTER SUR UNE SUR-

Un point qui n'est pas libre peut être plus ou moins gêné. Supposons d'abord que ses coordonnées soient liées entre elles par une relation unique

$$(2) \quad \varphi(x,y,z) = 0.$$

On peut matérialiser la condition exprimée par cette équation, quelles que soient les véritables liaisons physiques desquelles on l'ait déduite, en supposant que le point ne puisse pas quitter la surface représentée par l'équation (2), en ayant d'ailleurs la liberté de se mouvoir sur cette surface de toutes les manières possibles. Ainsi, quand un point doit rester à une distance constante d'un axe fixe, on peut supposer qu'il se meut sur un cylindre de révolution autour de cet axe; s'il doit rester à une distance constante d'un point fixe, comme dans le cas du pendule simple, on pourra supposer qu'il se meut sur une sphère, etc.

Il est évident que l'équilibre aura lieu si la résultante des forces qui agissent sur le point matériel est dirigée suivant la normale à la surface directrice; car alors, tout l'effort de cette résultante consistant à écarter le point matériel de la surface, dans un sens ou dans l'autre, chose que nous supposons impossible, cet effort sera complétement sans effet et le point restera en repos.

Il arrive souvent que le corps est simplement posé sur une surface matérielle; il faut alors, si l'on veut que le corps reste en équilibre, que la résultante des forces tende à le faire pénétrer dans l'intérieur de la surface, et non à l'en détacher. C'est ce qu'on exprime en disant que la direction de la résultante doit être celle de la normale intérieure.

L'analyse nous apprend que si nous appelons α, β, γ les angles formés avec les axes coordonnés par la direction de la normale extérieure à la surface (2), on a

$$\cos \alpha = \frac{d \varphi}{dx}, \quad \cos \beta = \frac{d \varphi}{dy}, \quad \cos \gamma = \frac{d \varphi}{dz},$$

en posant

$$\Delta \varphi = + \sqrt{\left(\frac{d \varphi}{dx}\right)^{2} + \left(\frac{d \varphi}{dy}\right)^{2} + \left(\frac{d \varphi}{dz}\right)^{2}};$$

il faut donc, pour l'équilibre, que les projections de la résultante X,Y,Z soient respectivement proportionnelles à — $\cos \alpha$, — $\cos \beta$, — $\cos \gamma$, ou â

$$-\frac{d\varphi}{dx}$$
, $-\frac{d\varphi}{dy}$, $-\frac{d\varphi}{dz}$;

done on écrira, en appelant à un certain facteur positif,

$$X = -\lambda \cos \alpha, \quad Y = -\lambda \cos \beta, \quad Z = -\lambda \cos \gamma,$$
 ou blen

$$\mathbf{X} = -\lambda_i \frac{d\varphi}{dx}, \quad \mathbf{Y} = -\lambda_i \frac{d\varphi}{dy}, \quad \mathbf{Z} = -\lambda_i \frac{d\varphi}{dz}$$

en représentant $\frac{\lambda}{\Delta \omega}$ par λ .

On peut écrire ces équations de la manière suivante :

(3)
$$\begin{cases} X + \lambda \cos \alpha = 0, \\ Y + \lambda \cos \beta = 0, \\ Z + \lambda \cos \gamma = 0. \end{cases}$$

Les trois cosinus qui figurent dans ces équations sont des fonctions connues des coordonnées du point que nous êtudiens, à est un coefficient indéterminé. En éliminant ce coefficient entre les équations (3), on obtiendre les deux relations auxquelles doivent satisfaire les composantes X, Y, Z, pour l'équilibre de leur point d'application. Ces relations étant supposées vérillées, l'une quelconque des équations (3) fera connatire la valeur de l'indéterminée à.

Mises sous la forme (3), les équations de l'équilibre d'un point matériel assujetti à se mouvoir sur une surface sont les mêmes que celles de ce point matériel libre soumis aux mêmes actions, en supposant qu'on joigne aux forces dont les projections sur les trois axes sont représentées par X, Y, Z, une nouvelle force à dirigée saivant la normale extérieure. Cette force à, qui fait que le point matériel peut être regardé comme libre, est ce qu'on appelle la réaction de la surface. La direction de cette réaction est celle de la normale extérieure; sa grandeur n'est pas immédiatement counue; mais il suffit que les trois équations aient lieu pour une valeur convenable de \(\lambda\); les conditions d'équilibre, dans ce cas, se réduisent donc à deux, qu'on tirerait des équations (3) en éliminant à. Ces deux conditions étant supposées satisfaites, l'une des équations fournira la valeur de la réaction inconnue à.

En réamé, dans la nature, les choses ne se passent pas ainsi. Nous avons admis qu'un corps placé sur une surface peut se déplacer comme on veut sur cette surface, sans un effort

CHAPITRE IL - ÉQUILIBRE D'UN POINT MATÉRIEL. quelconque, mais qu'il ne peut y pénétrer. Il existe une force particulière appelée frottement, qui fait qu'un point ne peut se déplacer sur la surface que si on lui applique, dans le plan tangent à la surface, un effort déterminé ou un effort plus grand. L'action de la surface n'est donc pas normale; on n'a plus, à proprement parler, d'équations d'équilibre; l'équilibre est indéterminé, et les forces indépendantes de la surface peuvent varier dans une certaine mesure sans qu'il y ait de mouvement produit. Pour nous, qui faisons actuellement de la Mécanique rationnelle, nous commencerons par négliger le frottement, et nous supposerons toujours que l'action de la surface soit dirigée suivant la normale extérieure. Nos résultats seront ainsi forcément entachés d'inexactitude, et ne seront pas directement applicables aux corps tels qu'ils existent dans la nature.

NII. - EQUILIBRE D'UN POINT ASSUJETTI A RESTER SUR UNE COURSE FIXE.

Le point matériel que nous considérons peut être encore plus gêné dans ses mouvements que nous ne venons de le supposer; c'est ce qui arrivera, par exemple, si les liaisons sont telles, qu'il résulte de leur présence deux équations distinctes entre les coordonnées de ce point :

$$\begin{cases} \varphi(x, y, z) = 0, \\ \psi(x, y, z) = 0. \end{cases}$$

Ces deux équations représentent une courbe dont le point ne peut pas s'éloigner : c'est sa trajectoire (*) qui se trouve ainsi immédiatement conque.

Donc, il faut, pour l'équilibre, que la résultante tende à faire sortir le point de cette ligne, c'est-à-dire qu'elle soit perpen-

^(*) N'oublions pas que nos équations d'equilibre d'impliquent pas le moins du monde l'idée que la point reste en repos. Si les forces que nous considérons et qui satisfont aux: combilions d'équilibre agissalent soules que le corps en report, Il y vesterall, voils tent. Mais rian n'empéche que le point n'ait à l'in-Mant considéré un certain monvement du à des manses quelconques. Alors ce monvement se continuem absolument comme si les forces qui se font équilibre n'existrient pas.

PREMIÈRE SECTION. - STATIQUE.

diculaire à l'élément ds de cette courbe; on doit donc avoir

(5)
$$X dx + Y dy + Z dz = 0,$$

En vertu des équations (4), dx, dy, dz sont liés par les relations

(6)
$$\begin{cases} \frac{d\varphi}{dx}dx + \frac{d\varphi}{dy}dy + \frac{d\varphi}{dz}dz = 0, \\ \frac{d\psi}{dx}dx + \frac{d\psi}{dy}dy + \frac{d\psi}{dz}dz = 0. \end{cases}$$

Éliminons dx, dy, dz entre les équations (5) et (6); pour cola, ajoutons-les membre à membre après avoir multiplié la deuxième par λ , la troisième par μ , et égalons à zéro les coefficients respectifs de dx, dy, dz; nous aurons

$$(7) \begin{tabular}{l} & X + \lambda \frac{d \varphi}{d x} + \mu \frac{d \psi}{d x} = 0, \\ & Y + \lambda \frac{d \varphi}{d y} + \mu \frac{d \psi}{d y} = 0, \\ & Z + \lambda \frac{d \varphi}{d z} + \mu \frac{d \psi}{d z} = 0. \\ \end{tabular}$$

Au lieu d'une seule réaction, comme dans le cas d'une surface, nous en aurons deux dirigées suivant les normales respectives aux surfaces représentées par les équations (4).

Les conditions de l'équilibre se réduiront à une en éliminant λ et μ entre les équations (7). En même temps, on déterminera la valeur des quantités λ et μ qui sont liées aux réactions inconnues.

On aurait pu, dans les deux cas que nous venons d'étudier, trouver directement l'équation ou les équations d'équilibre, sans introduire d'inconnues auxiliaires.

En effet, la réaction d'une surface étant normale à cette surface, on pourrait prendre pour axes cette normale et deux autres droites rectangulaires. Les équations obtenues en égalant à zéro les projections des forces sur ces deux derniers axes ne contiendraient pas la réaction inconnue; ce seraient les équations d'équilibre.

De même pour le cas d'une courbe fixe.

CHAPITRE III.

ÉQUILIBRE DES SYSTÈMES QUELCONQUES DE POINTS MATÉRIELS.

Après avoir étudié tout ce qui se rapporte à l'équilibre d'un point matériel, il faut passer au cas d'un corps proprement dit, c'est-à-dire d'un système de points matériels liés entre eux d'une manière quelconque.

Ces liaisons des divers points résultent des forces intérieures, dont nous avons parlé en définissant d'une manière générale la constitution des corps matériels. Le caractère spécial des forces intérieures est d'être deux à deux égales et directement opposées, mais non appliquées au même point. Leur nombre est infini comme celui des points du système. Elles se distinguent par là des forces extérieures qui penvent être quelconques, et qui sont appliquées à un certain nombre de points bien déterminés.

Tout étant ainsi disposé, et le corps étant supposé en repos, il arrivera nécessairement de deux choses l'une : ou bien le corps restera en repos, c'est le cas de l'équilibre, ou bien il prendra un certain mouvement. Le premier cas, dont l'étude est l'objet de la Statique, paraît beaucoup plus simple que le second; de plus, il arrive, comme nous le verrons en Dynamique, que le cas du mouvement, qui semblait d'un ordre de complication bien supérleur, se ramène immédiatement au cas de l'équilibre.

Il est donc naturel de commencer l'étude de la Mécanique par la Statique; seulement, je ferai remarquer que nous n'avons nullement la prétention de nous débarrasser, dans cette première Partie, de la considération du mouvement. Tout au contraire, c'est de là que nous avons tiré nos principes et nos théorèmes fondamentaux; et nous avons commencé cette Section par définir l'effet produit par une ou plusieurs forces appliquées à un point matériel.

Il est d'ailleurs évident qu'au point de vue de la théorie proprement dite, quand on laisse de côté la résolution des problèmes particuliers, il n'y a pas de différence entre la Statique et la Dynamique, tent qu'on se borne à considérer l'effet des forces sur un point matériel unique. Il résulte de noure principe fondamental que ces forces, quel qu'en soit le nombre, peuvent toujours être remplacées par une résultante unique. Cette résultante falt connultre à la fois, d'une part la direction et l'accélération du mouvement produit par les forces données, d'autre part la direction et la grandeur de la force qu'il faudrait employer pour leur faire équilibre. Il n'y a pas là deux problèmes, mais une équation entre deux quantités, équation qui fait connaître l'une ou l'autre de ces deux quantités, suivant celle que l'on suppose donnée. Il est vrai qu'une fois l'équilibre établi, il persiste indéfiniment tant qu'on ne modifie pas l'ordre de choses existant ; tandis qu'en Dynamique, il faut pousser les choses plus loin, et chercher ce que sera le mouvement dans toute la suite du temps. Mais ceci est une pure question de calcul intégral : si nous connaissons, comme cela doit être, les forces qui agissent à chaque instant sur le mobile, nous connaissons à chaque instant l'accélération totale de son mouvement, nous pouvons tracer un élément de la trajectoire, et suivre la mobile pendant qu'il percourt cet élément; voilà tout ce qu'on peut demander à la Mécanique; c'est à l'analyse qu'il appartient de réunir ces éléments pour en faire une courbe continue, et de trouver la loi générale qui embrasse toutes les lois élémentaires.

Si nous considérons un corps, même un solide invariable, il n'est pas possible de commencer par définir le mouvement qu'il doit prendre sous l'influence de forces données, et de coaclure de là les conditions de son équilibre.

Il est vrai que si l'on connaissait les forces intérieures, rien n'empêcherait de regarder chacun des points matériels qui composent le corps comme parfaitement libre, sous l'action des forces tant intérieures qu'extérieures qui le sollicitent, et de déterminer par la théorie qui précède les lois de son équilibre et de son mouvement.

Malheureusement, nous ne savons pour ainst dire absolument rien sur les forces intérieures; et tous nos efforts vont chapitre in. — soullers des systèmes que longues, etc. 41 tendre à les éliminer autant que possible, c'est-à-dire que nous nous proposons surtout de chercher ce que l'on peut dire en Statique sans connaîtré les lois de l'action de ces forces, comme on étudie la capillarité sans avoir besoin de connaître au juste la nature des forces moléculaires qui produisent les phénomènes.

Il est alors indispensable d'étudier d'abord ce qui se passe quand le corps reste en équilibre sous l'action des forces qui en sollicitent les divers points, c'est-à-dire de commencer la Mécanique des systèmes matériels par la Statique.

§ VIII. - DES DIFFÉRENTS PRINCIPES DE LA STATIQUE (*).

Les trois principes fondamentaux que nous avons posés au commencement de cette Section nous suffisent pour exposer à la fois la Statique et la Dynamique. Mais nous avons dit que la naissance de la première science avait précédé de heaucoup celle de la seconde. La Statique a donc ses principes spéciaux, plus simples que ceux de la Dynamique, et il ne sera pas sans intérêt, dans une rapide étude historique, de rechercher quels sont les principes que les auteurs ont pris à diverses époques pour bases de la Statique.

Ces principes peuvent se réduire à trois : nous allons, en les discutant succinctement, justifier le choix que nous avons fait et l'ordre que nous avons suivi.

Premier enincipe ou principe du levier. — Archimède, le seul parmi les anciens qui nous ait laissé une théorie de l'équilibre dans ses livres De aquiponderantibus et De planorum aquilibriis, est l'auteur du principe du levier, lequel consiste, comme le savent tous les mécaniciens, en ce que, si un levier est chargé de deux poids quelconques placés de part et d'autre du point d'appui, à des distances de ce point réciproquement proportionnelles aux mêmes poids, ce levier sera en équilibre,

^(*) Ce paragraphe est extenti, pone in plan grande partie, de l'excellente Sottes historique mise par Lagrange en tôte de la Mécanique analytique, part t, sect :.

Consultar aussi Fouveage ette da M. Caurnat, IIv. II, chap. II, Revae des principes de la Statique, t. I, p. 137.

et son appui sera chargé de la somme des deux poids. Archimède prend ce principe, dans le cas des poids égaux placés à des distances égales du point d'appui, pour un axiome évident de sol-même, ou du moins pour un principe d'expérience; et il ramène à ce cas simple et primitif celui des poids inégaux.

L'équilibre d'un levier droit et horizontal, dont les extrémités sont chargées de poids égaux, et dont le point d'appui est au milieu du levier, est une vérité tout à fait évidente, car il n'y a aucone raison pour que l'un des poids l'emporte sur l'autre, tout étant égal de port et d'autre du point d'appui. Il n'en est pas de même de la supposition que la charge de l'appui soit égale à la somme des deux poids. Il paraît que tous les mécaniciens l'ont prise comme un résultat de l'expérience journalière, qui apprend que le poids d'un corps dépend seulement de sa masse totale, et nullement de sa figure.

On passe aisément du levier droit au cas d'un levier de forme quelconque; et ensuite, par des démonstrations analogues à celles de la Géométrie pure, on déduit du principe d'Archimède la solution de toutes les questions de Statique.

Ce principe est le seul qui soit fondé sur la nature de l'équilibre considéré en lui-même, et comme un état indépendant du mouvement. Les puissancès sont des poids, ou peuvent être regardées comme tels; et une puissance n'est censée double ou triple d'une autre qu'autant qu'elle est réellement formée par la réunion de deux ou trois puissances égales; la clarté de l'énoncé n'exige ni que les forces soient représentées par des lignes, ni que l'on invoque aucun axiome tiré de la nature du mouvement.

Si l'on se bornait à la Statique scule, on devrait peut-être prendre ce principe pour base. Mais on relèguerait ainsi au seçond plan le problème le plus simple de la Statique, celui de l'équilibre d'un point matériel, pour introduire dès le début la notion d'un corps rigide, et celle des forces intérieures, dont le rôle ne se trouve d'ailleurs pas, quand on emploie cette méthode, suffisamment mis en évidence, circonstance d'où il peut résulter des embarras pour l'ensemble de la Mécanique.

DEUXIÈME PRINCIPE OU PRINCIPE DE LA COMPOSITION DES FORCES CONCOURANTES. — Le second principe fondamental de la Statique

est celui de la composition des forces concourantes. C'est celui qui nous a servi de base dans notre exposition, ou plutôt c'est un cas particulier de notre deuxième principe général, relatif à la composition des effets des forces qui agissent sur

un même point matériel.

Si nous cherchons l'origine de ce principe, il est nécessuire de remonter assez haut dans l'histoire des sciences; car le livre des Questions mécaniques, attribué à Aristote, présente des applications nombreuses de la notion de la composition des mouvements, mais confuses et obscurément présentées. La règle du parallélogramme des vitesses s'y trouve cependant nettement énoncée, et l'auteur en a bien senti la liaison avec la composition et la décomposition des forces.

En général d'ailleurs, parmi les anciens, la considération des mouvements composés a surtout été employée par les géomètres, qui l'ont appliquée à la description des courbes, comme Archimède pour la spirale, Nicomède pour la conchoïde, etc.; plus récemment Roberval a déduit des mêmes principes une méthode ingénieuse de tirer les tangentes aux courbes dont la définition est présentée d'une manière convenable. Mais Galilée est le premier qui ait fait usage de la considération des mouvements composés dans la Mécanique, pour déterminer la courbe décrite par un corps pesant, en vertu de l'action de la gravité et de la vitesse communiquée par la force de projection; il paraît d'ailleurs que Galilée n'a pas connu toute l'importance de ce principe dans la théorie de l'équilibre.

On trouve encore la théorie des mouvements composés dans les écrits de Descartes, de Roberval, de Merseaue, de Wallis, etc.; mais jusqu'à l'année 1687, dans laquelle ont para les Principes mathématiques de Newton, et le Projet de la nouvelle Mécanique de Varignon, on n'avait point pensé à substituer, dans la composition des mouvements, les forces aux mouvements qu'elles peuvent produire, et à déterminer la force composée résultante de deux forces données, comme on détermine le mouvement composé de deux mouvements rectilignes et uniformes données.

Le principe de la composition des forces donne tout de suite les conditions de l'équilibre entre trois puissances, ou même entre un nombre quelconque de puissances agissant sur un point, condition qu'on n'avait pu déduire de l'équilibre du lévier que par une suite de raisonnements; et pourtant le problème de l'équilibre d'un point est bien certainement le plus simple de toute la Statique, puisqu'il est le seul dans lequel on n'ait pas à se préoccuper de la modification que produisent les forces que l'on considère, sur l'équilibre intérieur du corps. Quand on connaît la loi de l'équilibre des forces concourantes, on en déduit la règle du levier par le théorème des moments, dû à Varignon. Le seul inconvénient de cette manière de procèder, c'est qu'on est obligé d'introduire la considération étrangère du mouvement pour l'étude des cas où il n'y a pas de mouvement.

On a cherché depuis, pour rendre à la Statique son indépendance et en quelque sorte son autonomie, à affranchir le principe de la composition des forces de la considération du mouvement, et à l'établir uniquement sur des vérités évidentes par elles-mêmes. Au commencement du xviție siècle, Daniel Bernoulli a donné le premier, dans les Commentaires de l'Académie de Pétersbourg, t. 1et, une démonstration très-ingénieuse du parallélogramme des forces. Cette démonstration, longue et compliquée, a été ensuite rendue un peu plus simple par d'Alembert, dans le premier volume de ses Opuscules, et aussi par M. Aimé, Journal de M. Liouville, t. Ist. Mais il faut avouer, avec Lagrange, qu'en séparant ainsi le principe de la composition des forces de celui de la composition des mouvements, on lui fait perdre ses principaux avantages, l'évidence et la simplicité, et on le réduit à n'être qu'un résultat de constructions géométriques on d'analyse.

En parlant du principe du levier, nous avons vu que ce principe se composait de deux parties dont l'une est évidente, et dont l'autre ne l'est nullement à priori : c'est celle qui consiste à déterminer l'intensité de la résultante des deux forces, ou la charge du point d'appui. Ici, au contraire, la difficulté consiste à prouver l'existence d'une résultante. Pour arriver à cette notion, on est obligé de considérer le mouvement qu'un corps doit prendre sous l'action de deux forces qui ne se font pas équilibre, mouvement qui, étant nécessairement unique,

peut être auribué à une force unique agissant sur le corps dans la direction de son mouvement (*).

Il y a plus : on est encore obligé d'admettre que la direction de la résultante de deux forces passe dans l'intérieur de l'angle de ces deux forces, et cette seule chose suppose implicitement une sorte d'indépendance entre les effets des deux forces. En effet, cet axiome seralt aussi peu évident que possible si la présence de la deuxième force pouvait modifier le genre d'action de la première, de même qu'un courant électrique agit par influence sur un courant voisin.

Il me semble résulter clairement de cette discussion que le véritable principe de la Mécanique est celui dont nous avons fait usage, après Galilée et Newton. Deux forces agissant simultanément sur un point matériel produisent chacune son effet, lequel est en outre indépendant de l'état de repos ou de mouvement du point. Ce principe nous a permis d'élucider tout d'un coup les fondements de la Dynamique et ceux de la Statique, sciences jumelles, que nous allons maintenant suivre l'une après l'autre dans leur existence distincte, après avoir autant que possible cherché à pénétrer le mystère de leur origine commune.

TROISIÈME PRINCIPE OU PRINCIPE DES VITESSES VIRTUELLES. — Auparavant, il est encore nécessaire de parler d'un troislème principe, connu sous le nom de principe des vitesses virtuelles. Colui-ci paraît encore plus étranger à la Statique proprement dite; et pourtant, il est certainement l'expression la plus générale des lois de l'équilibre, en même temps qu'il donne la vraid raison de ces lois dans leurs détalls comme dans leur généralité.

On doit entendre par vitesse virtuelle, dit Lagrange, celle qu'un corps en équilibre est disposé à recevoir, en cas que l'équilibre vienne à être rompu, c'est-à-dire la vitesse que ce corps prendrait réellement dans le premier instant de son mou-

^(*) Ainsi l'on peut dire que les démonstrations du geure de cette de Berroulli ne sont pas tout à fait exemptes de la considération de recuvament. Il sorait d'ailleure asses extraordinaire qu'en put démontrer la propriété fondamentale des forces sans s'appayer sur leur délicition, qui les présente comme des enues de mouvement.

vement: et le principe dont il s'agit consiste en ce que des puissances sont en équilibre, quand elles sont en raison inverse des vitesses virtualles de leurs points d'application, vitesses estimées sulvant les directions de ces puissances.

Cette phrase de Lagrange n'est autre chose, comme nous le verrons, que la traduction en langage mathématique de l'adage suivant, bien consu de tous les mécaniciens :

Ce qu'on gagne en force, on le perd en vitesse, et réciproquement.

Si l'on n'a pas oublié que nous appelons travail d'une force le produit de l'intensité de la force par la déplacement de son point d'application, estimé suivant la direction de la force, on voit que l'énoncé de Lagrange revient encore à dire que, quand deux forces sont en équilibre sur un corps quelconque, l'équilibre ne saurait être rompu sans que les produits que nous appelons travaux soient égaux pour les deux forces. En considérant l'une de ces forces comme la puissance appliquée à la machine, l'autre comme la résistance à vaincre, on dira que l'équilibre a lieu quand le travail de la résistance est égal au travail de la puissance, pour un déplacement hypothétique infiniment petit.

Les anciens n'ont pas connu cette loi dont l'importance est capitale, qu'on la regarde ou non comme un principe; et il paraît qu'on doit rapporter à Descartes (*) et à Wallis l'honneur d'avoir cherché les premiers la raison et le principe de l'équilibre des machines dans l'équivalence entre les travaux respectifs de la puissance et de la résistance, dans l'hypothèse où

CHAPITRE III. — EQUILIBRE DES SYSTÈMES QUELCONQUES, ETC. 47 la machine prendrait un certain mouvement dans un sens ou dans l'autre.

Avant Descartes et Wallis, Guido Uhaldi a le premier signalé la loi dont nous parlons, dans les poulles mobiles ou moufles. Ensuite arrive Galilée, dont les idées fort nettes à cet égard sont consignées dans un petit ouvrage curieux ayant pour titre :

Les Méchaniques de Galilée, mathématicien et ingénieur du duc de Florence, avec plusieurs additions, traduites de l'italien par le P. Mersenne, Minime. Paris, 1634.

Dans son éptire dédicatoire, Mersenne dit :

« Mais j'estime que l'ordre, et le règlement admirable que » la nature observe dans les forces mouvantes, vous donnera » encore plus de plaisir, parce que vous y verrez reluire une » équité et une justice perpétuelle qui se garde, et que l'on » remarque si justement entre la force, la résistance, le temps, » la vitesse et l'espace, que l'un récompense toujours l'autre, » car si le mouvement est viste, il faut beaucoup de force, et » s'il est lent, une petite force suffit. En effet, il est impos» sible de gaigner la force et le temps tout ensemble....

» Or, il faut conclure de tout ce discours que l'on ne peut n rien gaigner en force que l'on ne le perde en temps... (*), n

L'auteur passe ensuite en revue les principaux appareils connus sous le nom de machines simples, appareils qui sont les éléments dont se compose une machine quelconque; et il insiste à propos de chaque machine sur la loi capitale et universelle qui lie les forces en équilibre avec les vitesses que prendraient leurs points d'application, en cas de rupture de l'équilibre. Cette loi est ainsi présentée, à proprement parler, par Galilée et son commentateur, comme une propriété générale de l'équilibre, et non comme la vraie raison de l'équilibre, ainsi qu'on l'a fait depuis Descartes.

Enfin, c'est dans une lettre de Jean Bernoulli, adressée de Bâle à Varignon, le 26 janvier 1717, qu'on trouve le principe dont nous nous occupons, énoncé pour la première fois avec toute sa généralité.

^(*) Explication des machines et engins par l'aide desquels un pent uvec une parte force leven un fardeau fort perant. (Méchanique de Doucartes, tradulte par Nicolas Poisson, de l'Oratoire, 1668.)

Page 7: 4 L'invention de tous ces engins n'est fondée que aur un sont prins cipe, qui est que le même force qui peut lever un polds, par exemple de

^{* 100} livres, à la hauteur de deux pieds, on pout aussi Joyer un de 200 livres à

[&]quot; la hauteur d'un pied, on un de 400 à la hauteur d'un doud-pied, et aloui

^{*} des autres...

^{. ...} Car c'est le même de lever 100 livres à la heuteur d'un pled, et de re-

chaf encore 100 livres à la hauteur d'en pied, que d'en lever 200 à la hauteur
 d'an pied, et le même aussi que d'en lever 100 à la hauteur de deux pieds.

^(*) C'est l'axiome des mécaniciens, duoncé pour la première l'els presque dues les termes qu'en emploie encore adjourd'hui.

a Tout celu étant bien entendu, je forme, dit Bernoulli,

PROPOSITION GENERALE.

» Kn tout équilibre de forces quelconques, de quelque ma-» nière qu'elles soient appliquées et suivant quelque direction » qu'elles agissent les unes sur les autres, ou médiatement, » ou immédiatement, la somme des énergies affirmatives sera » égale à la somme des énergies négatives prises affirmative-» ment. » (Улишкох, Nouvelle mécanique.)

Bernoulli se contenta d'énoncer cette proposition générale et no la démontra point. Il est probable qu'il y était arrivé par une simple induction fondée sur des cas un peu plus compliqués que ceux qu'avait étudiés Galilée.

Lagrange, dans la première édition de sa Méchanique analytique, admet le principe de Bernoulli comme une espèce d'axiome; et il tire de ce principe une formule générale, qui renferme la solution de tous les problèmes qu'on peut proposer sur l'équilibre des forces.

Il semble pouriant que cette proposition n'est pas assex évidente en elle-même pour qu'il soit convenable de l'ériger en principe primitif. Il est préférable de prendre pour base une proposition plus simple, ainsi que nous l'avons fait, et de considérer le principe des vitesses virtuelles comme un théorème à démontrer (*). Cela fait, la formule de Lagrange permet d'en déduire la solution de tous les problèmes d'équilibre, sans constructions nouvelles, sans artifices particuliers, par une méthode simple, élégante, uniforme, ainsi que cela doit arriver quand on a été assex beureux pour saisir dans une science le principe suprême et générateur d'où tout le reste dérive.

Ce qui fait le caractère original de ce principe, c'est qu'il

réduit toute question d'équilibre de forces à une détermination de rapport de vitesses, de sorte qu'il ramène immédiatement et tout d'un coup la Statique à la Cinématique, c'està-dire à la Géométrie. On trouverait difficilement un exemple aussi curieux de passage d'une science à une autre science, toute différente comme objet et comme principes.

On comprend d'ailleurs facilement qu'une fois que, par une induction tirée de l'étude rationnelle et expérimentale d'un grand nombre de cas particuliers, on est parvenu au théorème général qui les renferme tous, on puisse inversement déduire de ce théorème les faits qui ont servi de point de départ, comme en démolissant un édifice on retrouve tous les matériaux qui ont servi à l'édiffer; c'est cette marche que nous allons suivre actuellement. Nous surions pu commencer par donner ainsi, sous leur forme mathématique actuelle, l'énoncé et la démonstration du principe des vitesses virtuelles, mais l'essence intime de ce principe ou théorème et sa véritable signification auraient complétement dispara sous la sécheresse de la forme didactique; on n'y aurait plus vu qu'une formule commode pour résoudre des problèmes, et pour ainsi dire le dénoument d'un drame dont on ignoreralt les péripéties. C'est pourquoi nous avons cru indispensable de donner ces quelques détails historiques.

Nous avons été par là, il est vrai, entraîné à présenter, contre notre habitude, les choses avec tout le vague et la demi-obscurité qu'on retrouve autour du berceau de chaque science, mais nous nous hâterons de réparer cette faute volontaire en domant des définitions nettes et précises, qui désormais nous serviront exclusivement dans tous nos raisonnements et nos calculs.

S IX. - THEOREMS DU TRAVAIL VIRTUEL.

Définitions. — Considérons un système matériel dont les divers points sont sollicités par des forces quelconques. Supposons chacun des points du système transporté de la position qu'il occupe dans une position infiniment voisine : on nomme vitesse virtuelle d'un quelconque de ces points, ou mieux dé-

^(*) Co n'est qu'après la publication du grand ouvrege de Lagrange que parat le première démonstration générale du principe des vitesses virtuelles. Elle est dun à Fourier et me date que de 1797. (Voir Journal de l'École Polytechnique, L. II.) On en e publié dopuis un grand nombre d'autres, et Lagrange lui-même a cru devoir en proposer une deus la deuxième édition de la Mécanique ana-trique.

placement virtuel (*), la droite qui joint la première position à la deuxième.

Ces déplacements virtuels sont des grandeurs purement géométriques; ils n'ont rien de commun avec les déplacements réels qui prendraient naissance si le corps n'était pas en équilibre. Les déplacements attribués à un ou plusieurs points peuvent être impossibles, d'autres incompatibles entre eux, ce qui n'empêche nullement de concevoir géométriquement un point dans deux positions voisines quelconques.

Le travail virtuel d'une force appliquée à ce point est le travail qui correspond au déplacement virtuel, c'est-à-dire qu'il est le produit du déplacement virtuel par la force et par le cosinus de l'angle que forment les directions respectives du déplacement et de la force. Nous désignerons cette quantité par la notation T.F., c'est-à-dire que nous ferons

$$T_*F = F\delta s \cos \overline{F_*\delta s}$$
 (**).

Nous allons maintenant établir l'enchaînement des propositions qui constituent les diverses parties du théorème.

I. Équilibre d'un point matériel. — Nous avons vu que, pour qu'un point matériel soit en équilibre, il faut et il sussit que la résultante de toutes les forces qui lui sont appliquées soit nulle.

Nous énoncerons identiquement la même chose en disant que la travail de cette résultante doit être nul pour tout déplacement virtuel attribué au point sur lequel elle agit. En effet, si cette résultante est nulle, son travail est aussi nul, quel que soit le déplacement du point d'application; et réciproquement, si le travail d'une certaine force est nul pour tout déplacement infiniment petit qu'on voudra supposer, cette force est nécessairement nulle elle-mème.

Mais nous savons que le travail de la résultante des forces
poliquées à un point est égal à la sampe des travail de la résultante des forces

appliquées à un point est égal à la somme des travaux de toutes les composantes; donc on peut dire que :

Pour qu'un point matériel soit en équilibre, il faut et il suffit que la somme des travaux de toutes les forces appliquées à ce point soit nulle pour tous les déplacements virtuels imaginables.

Quand le point dont il s'agit fait partie d'un système matériel, nous avons l'habitude de distinguer en deux groupes les forces que nous considérons comme appliquées à ce point, savoir : les forces extérieures F et les forces intérieures f.

Nous écrirons donc le propriété qui précède de la manière suivante :

(I)
$$\sum T.F + \sum T.f = 0,$$

et nous énoncerons ainsi la première partie du théorème :

Première partie. — Pour tout point faisant partie d'un système matériel en équilibre, la somme des travaux des forces appliquées à ce point, tant intérieures qu'extérieures, est nulle, pour un déplacement virtuel quelconque.

II. Équilibre d'un système matériel quelconque. — En appliquant le même raisonnement à tous les points matériels qui constituent notre système en équilibre, et faisant la somme de toutes les équations telles que (I), relatives à ces divers points, on voit que :

Deuxième vauvie. — Dans un système matériel en équilibre, la somme des travaux de toutes les forces, tant intérieures qu'extérieures, est égale à zèro, quels que soient les déplacements virtuels infiniment petits et indépendants les uns des autres que l'on imagine être pris en même temps par les différents points du système.

Ce théorème s'exprime analytiquement par l'équation

(II)
$$\sum T_r F + \sum \sum T_r f = \phi_r$$

la sommation s'étendant à la fois à toutes les forces agissant

^(*) La dénomination de viresse vértuelle vient de co qu'on pant concavoir que le déplacement virtuel se fasse avec uniformité deus un temps informant petit, et qu'alors les espaces parcourus sont préportionnels aux vilesses.

^(**) Pour distinguer les déplacements virtuels des déplacements réels, nous désignerons, suivant l'usage, les premiers par la letire &, les seconds par la caractéristique d.

sur un point quelconque et à tous les points que l'on considère comme formant le système étudié. Réciproquement, si la somme des travaux virtuels de toutes les forces appliquées au système est nulle, pour tous les déplacements imaginables des divers points qui le composent, le système, supposé primitivement en repos, ne sortira pas de cet état de repos : car. si l'on ne déplace qu'un seul de ces points matériels, ce qui revient à supposer que les déplacements des autres points sont nuls, on conclura de notre hypothèse que la somme des travaux virtuels des forces appliquées à ce point est égale à zéro, quel que soit le déplacement qu'on lui attribue, c'est-àdire que ce point, considéré seul, est en équilibre. Le même roisonnement, appliqué successivement aux divers points du système, montrera que tous ces points sont également en équilibre, et, par conséquent, le système tout entier est en équilibre. Ainsi, l'ou peut dire que, pour qu'un système matériel quelconque soit en équilibre, il faut et il suffit que la somme des travaux virtuels de toutes les forces qui agissent sur ses divers points soit nulle, quels que soient les déplacements infiniment petits et indépendants les uns des autres que l'on imagine être pris en même temps par ces différents points.

III. Équilibre d'un solide invariable. - Parmi tous les déplacements virtuels, en nombre infini, que nous pouvons attribuer simultanément aux divers points d'un système matériel, choisissons en particulier des déplacements tels, que les distances mutuelles de tous les points du système restent les mêmes; c'est-à-dire, concevons que nous déplacions le systôme matériel tout d'une pièce, comme si c'était un solide invariable. L'équation fournie par le théorème du travail virtuel, pour un pareil déplacement de l'ensemble des points motériels du système, ne contiendra aucun terme dépendant des forces intérieures. En effet, dans le déplacement particulier que nous considérons, la distance de deux quelconques des points matériels du système ne change pas. Donc les travaux virtuels des forces intérieures sont deux à deux égaux et de signes contraires, et, par conséquent, disparaissent tous de l'équation fournie par le théorème du travail virtuel.

(m) $\sum T.F = 0$.

Donc :

Thoisième vartie. — Lorsqu'on communique à un système un déplacement virtuel compatible avec la parfaite solidité du système, la somme des travaux virtuels des forces extérieures est nulle.

Le théorème que nous venons de démontrer nous donne une propriété générale de l'équilibre, dans laquelle n'entrent pas les forces intérieures. Cette propriété sera donc toujours vérifiée, quel que soit le degré de solidité ou de rigidité des parties du système; c'est-à-dire qu'elle devra nécessairement avoir lieu pour que l'équilibre existe; mais, en général, cela ne sera pas suffisant.

IV. Équilibre des systèmes à liuisons. — Les solides invariables sont des cas particuliers des systèmes matériels dans lesquels on suppose qu'il existe entre les divers points certaines liaisons géométriques.

On entend par liaisons des conditions que le système doit nécessairement remplir. On peut imaginer une variété infinie de liaisons, et cela aussi bien au point de vue géométrique qu'au point de vue physique; mais on peut toujours, quelles que soient ces liaisons, les supposer remplacées per des forces capables d'obliger le système à satisfaire aux mêmes conditions. C'est ainsi que, dans le cas où un point matériel est assujetti à rester sur une courbe fixe ou sur une surface fixe, sans frottement, nous avous vu comment on peut déterminer une force capable de produire le même effet. Cette force s'appelle la réaction normale de la courbe ou de la surface.

En substituent aux liaisons les forces qui peuvent en tenir lieu, on fait rentrer le système matériel dans le cas général pour lequel le théorème du travail virtuel a été établi. Pour que ce système soit en équilibre, il faut et il suffit que la somme des travaux virtuels de toutes les forces, y compris celles qui tiennent la place des flaisons, soit égale à zéro, quels que soient les déplacements virtuels qu'on attribue à

tous les points matériels dont il est formé. Ce mode de procéder a l'avantage de faire connaître les forces capables de remplacer les liaisons, ou, comme on dit, les charges des appuis. En éliminant ces forces entre les équations fournies par le théorème général, on obtient les véritables équations d'équilibre.

On peut aussi ne pas introduíre dans le calcul ces inconnues auxiliaires. En effet, nous allons montrer que si, parmi tous les déplacements virtuels infiniment petits qu'on est libre d'attribuer à tous les points du système, on choisit spécialement ceux qui sont compatibles avec les liaisons, la somme des travaux virtuels des forces de liaison est identiquement nulle, de sonte que ces forces disparaissent d'elles-mêmes des équations fournies par le théorème du travail virtuel, appliqué à ces déplacements particuliers.

Pour établir ce point capital, nous considérerons seulement les trois modes de liuison suivants, qui sont ceux qu'on rencontre le plus fréquemment dans les machines.

t° Quand certains points sont obligés de rester sur des courbes fixes ou sur des surfaces fixes, sans éprouver de frottement de la part de ces courbes ou de ces surfaces, le travail de la réaction normale est évidemment nul, pour fout déplacement du point dirigé suivant la courbe ou sur la surface fixe, puisqu'un pareil déplacement virtuel est perpendiculaire à la direction de la force.

2º Quand deux points du système sont assujettis par un mode de liaison quelconque à rester à des distances invariables l'un de l'autre, on obtiendrait le même effet au moyen de deux forces égales et contraires, appliquées respectivement à chacun de ces deux points, et dont il est possible de calculer à posteriori l'intensité, comme on calcule la réaction d'une surface fixe. Or nous avons démontré, p. 30, que la somme des travaux de deux forces de ce genre est nulle, pour tout déplacement virtuel en vertu duquel la distance des deux points ne change pas.

3º Enfin, quand deux parties du système, assimilées à des solides invariables, sont maintenues en contact, sans qu'il se développe de frottement entre leurs surfaces, on peut regarder ce résultat comme produit par deux réactions égales et concharitae III. — équilibre des systèmes quelconques, etc. 55 traires, agissant sur les deux solides aux points par lesquels ils se touchent, et dirigées suivant la normale commune à leurs surfaces (*). Or, dans ce cas encore, la somme des travaux des deux réactions est nulle, pour tout mouvement virtuel du système en vertu duquel les deux surfaces ne cessent pas de se toucher.

En effet, les deux points M, m (fig. 12), qui se trouvaient en contact, occupent par l'effet du déplacement virtuel des positions M', m', toutes deux situées sur le nouveau plan de contact des surfaces, plan qui fait un angle infiniment petit avec le plan tangent commun en M.

Les déplacements virtuels MM', mm' des points d'application de nos deux forces ont donc une même projection sur la normale commune NN; et, comme ces forces elles-mêmes ont des directions opposées suivant cette normale, la somme de leurs travaux virtuels est nulle (**).

Si donc nous considérons seulement des systèmes matériels dont les liaisons rentrent dans l'un des trois types que nous venons d'étudier, il résulte de la discussion précédente qu'il n'y aura pas lieu de s'occuper des forces provenant des liaisons, tant qu'on appliquera seulement le théorème du travail virtuel à des déplacements compatibles avec ces liaisons. Ce résultat constitue la quatrième partie de notre théorème fondamental.

Quattulms vante. — Quand un système de points matériels liés entre eux d'une manière quelconque est en équilibre, la somme des travaux virtuels des forces directement appliquées au système est nulle, tout comme si chacun des points du système était libre, mais seulement pour tout système de déplacements virtuels compatible avec l'existence des liaisons.

^(*) Quand on tient compte du frottement, l'action mutuelle de deux solides en contact n'est plus dérigée suivant la normale commune à leurs surfaces, mais l'action et la réaction sont toujours égales en genudeur absolute et opposées en direction.

^(**) On voit que, conformément aux programmes de l'École Polytechnique, nous ne démontrons pas dans toute sa généralité le théorème de travail virtual. On post consulter à cet égard la Mécanique rationnelle de M. Duhamel, 3º édition, et un Mômoire de Poinsot sur l'équilibre et le mouvement des systèmes, Mémoire qui se trouve à la suite des Éléments de Starique de cet auteur.

Des machines. — Les machines ne sont pas autre chose que des systèmes de corps assujettis à certaines liaisons; et généralement ce sont des systèmes à liaisons complètes, dans lesquels le mouvement d'un seul point détermine celui de tous les autres, le mouvement du premier ne pouvant d'ailleurs avoir lieu que sur une trajectoire déterminée.

Dans ce cas, il n'existe qu'un seul système de déplacements virtuels possibles, et le théorème du travail virtuel ne fournit qu'une seule équation pour l'équilibre des forces appliquées à la machine.

Réciproque du théorème du travail virtuel.

En démontrant la deuxième partie du théorème, nous avons établi que réciproquement, toutes les fois que la somme des travaux de toutes les forces du système est nulle, pour un déplacement virtuel quelconque, on est assuré que le système est en équilibre.

Mais il est bien évident qu'une pareille vérification est impossible, et que le théorème en question serait peu utile, si l'on n'avait des moyens de discerner dans chaque cas particulier, parmi toutes ces conditions dont le nombre est infini, celles qui sont suffisantes (*) pour l'équilibre du système.

Le scul cas qui présente de l'intérêt est celui d'un système à liaisons, car si l'on avait des points isolés, indépendants les uns des autres, il est bien clair que chacun de ces points devrait être en équilibre séparément, et que le système constitué par leur réunion ne présenterait aucune propriété. Or nous allons faire, voir que réciproquement, si la somme des travaux des forces directement appliquées au système est égale à zèro pour tout déplacement virtuel compatible avec les liaisons, ce système est en équilibre.

En effet, désignons toujours d'une manière générale par F les forces directement appliquées au système; s'il n'y avait

CHAPITER III. - ÉQUILIBRE DES SYSTÈMES QUELCONQUES, ETC. 57 pas équilibre, le système supposé en repos se mettrait en mouvement, et son mouvement s'effectuerait conformément aux linisons auxquelles il est assujetti. On pourrait s'opposer à ce mouvement, en appliquant à chacun des points matériels du système une force convenable, dirigée en sens contraire de in direction suivant laquelle ce point matériel tendrait à se déplacer; des lors, le système matériel serait en équilibre sous l'action des forces Q, Q', Q", ..., que l'on devrait ainsi appliquer à ses divers points, et des forces F que l'on avait déjà. D'après ce qui vient d'être établi il n'y a qu'un instant, la somme des travaux des forces O et F devrait être nulle pour tout déplacement virtuel compatible avec les liaisons, et en particulier pour le déplacement infiniment petit que le système aurait pris tout d'abord sous l'action des forces F seules, si l'on n'avait pas appliqué les forces Q pour s'y opposer. Mais, par hypothèse, la somme des travaux virtuels des forces F est nulle pour tout déplacement compatible avec les liaisons, et par conséquent pour le mouvement particulier dont il s'agit : donc, la somme des travaux virtuels des forces Q devrait aussi être nulle pour ce mouvement particulier. Or ceci est impossible puisque, dans ce mouvement, le point d'application de chacune des forces Q se déplace précisément en sens contraire du sens dans lequel la force agit; d'où il suit que les travaux virtuels de ces forces sont tous négatifs.

Il résulte de ce qui vient d'être dit que, pour qu'un système matériel dans lequel on imagine des liaisons soit en équilibre sous l'action des forces F directement appliquées à ses différents points, il faut et il suffit que la somme des travaux virtuels de ces forces soit nulle, pour tout déplacement infiniment petit compatible avec les liaisons.

Ainsi se trouve limité dans chaque cas, par les fois mêmes qui régissent la constitution d'un système matériel, le nombre des conditions réellement nécessaires à l'équilibre de ce système. Dans la plupart des machines, d'après ce que nous avons dit, il n'y a qu'un seul mouvement virtuel possible : une seule condition est donc nécessaire et suffisante pour que des forces en nombre quelconque se fassent équilibre par l'intermédiaire de cette machine. Le théorème du travail virtuel donne avec la plus grande facilité cette équation unique, en étiminant

^(*) Il faut entendre par là les conditions qui, unu fois vérifiées, cutrainent toules les autres, car il ne faut pas oublier que ces conditions sont toutes également nécessaires, et que, ai une soule d'entre elles n'était pas remplie, l'équilibre ne saurait subaister.

sans qu'on s'en aperçoive tout ce qui se passe dans l'intérieur de la machine.

Considérons par exemple la presse hydraulique (t. 1", p. 238). On sait que cette machine se compose de deux corps de pompe remplis d'eau ou d'un liquide quelconque, et reliés l'un à l'autre par un tuyau de communication. Un piston qui se trouve en contact avec le liquide se meut dans chacun des deux cylindres. Sur le plus petit de ces pistons agit la puissance P, sur le plus grand s'exerce la résistance R.

Un seul mouvement virtuel est possible : si nous supposons que le premier piston s'enfonce d'une quantité δh , le deuxième se soulevant de $\delta h'$, l'égalité des travaux virtuels de la puissance et de la résistance donne l'équation

de laquelle nous allons tirer la condition d'équilibre de la presse hydraulique.

Pour cela nous remarquerons qu'en vertu de l'incompressibilité des liquides, le volume dont a diminué la colonne contenue dans le premier cylindre doit être exactement égal à l'excédant que nous retrouvens dans le deuxième. On a donc, 8 et 8' désignant les sections des deux pistons,

d'où, en éliminant les vitesses virtuelles,

$$\frac{P}{R} = \frac{S}{S'}$$
:

Dans l'équilibre de la presse hydraulique, la puissance est à la résistance dans le rapport direct des sections des deux cylindres.

On trouversit de même les conditions d'équilibre des systêmes de poulies, des équipages de roues dentées, etc.

Considérons, par exemple, une série d'arbres tournants dont les vitesses soient en rapport constant. Appelons $\delta \alpha$ la vitesse angulaire virtuelle du premier arbre; $\varepsilon_1, \varepsilon_2, \ldots$, les raisons (*) des arbres auxquels sont appliquées des puissances; n., n., n., celles des arbres sur lesquels agissent des résistances. L'équation du travail virtuel est

$$\mathbf{P} p_i \delta \alpha + \mathbf{P}_i p_i \cdot \epsilon_i \delta \alpha + \mathbf{P}_2 p_i \cdot \epsilon_i \delta \alpha + \ldots - \mathbf{R}_i q_i \cdot n_i \delta \alpha - \mathbf{R}_i q_i n_i \delta \alpha \cdot \ldots = \mathbf{o}.$$

On en conclut l'équation

$$\mathbf{P}\,p + \sum \mathbf{P}_{i}p_{i}\epsilon_{i} - \sum \mathbf{R}_{i}q_{i}q_{i} = \mathbf{o}\,,$$

§ X. — Équations générales de l'équilibre d'un système matériel quelconque.

Quelle que soit la constitution d'un système matériel dont on recherche les conditions d'équilibre, il est clair qu'on n'altère pas cet équilibre, supposé établi, en supposant le système invariable de forme. Donc les équations qui répondent nux déplacements virtuels compatibles avec la rigidité du système s'appliquent à tous les systèmes matériels imaginables.

Nous allons montrer que les équations correspondantes à ces déplacements virtuels sont au nombre de six. Elles portent le nom d'équations générales de l'équilibre, parce qu'elles s'appliquent à un système quelconque. Elles sont les seules qui soient générales, car elles sont suffisantes dans le cas d'un solide invariable. Quant aux autres cas, ces équations toujours nécessaires ne seront pas suffisantes, et il faudra, après s'être assuré qu'elles sont vérifiées, rechercher quelles sont les nouvelles conditions introduites par la nature spéciale du système dont on s'occupe.

Les mouvements compatibles avec la solidité du système sont de trois sortes : 1° un mouvement de translation dans uns direction quelconque; 2° un mouvement de rotation autour d'un axe passant par un point quelconque; 3° un mouvement composé des deux précédents, lequel se ramène, si on veut, à celui d'une vis dans son écrou.

1º Mouvement de translation. - Considérons d'abord le mouvement de translation. Le travail d'une force F pour un

^(*) Foir Cintimatique, p. 5/11.

60 FREMIÈRE SECTION. — STATIQUE. déplacement de de son point d'application est

Foscos Fas:

done nous devons avoir

(i)
$$\sum F \delta e \cos \overline{F \delta s} = 0$$
.

Or, às est le même pour tous les points du système, d'après la définition du mouvement de translation; ce facteur est donc commun à tous les termes de l'équation (1), et en le supprimant Il reste

(2)
$$\sum F \cos \overline{F \partial s} = 0,$$

c'est-à-dire que la somme des projections des forces extérieures dans une direction quelconque est nulle.

2º Mouvement de rotation. — Donnons actuellement au corps un déplacement angulaire dα autour d'un axe quelconque. Le travail d'une force, dans ce mouvement de roution, est égal au produit de dα par le moment de la force pris par rapport à l'axe. Désignons par la notation MF le moment de la force F par rapport à cet axe; le théorème du travail virtuel pourra s'écrire dans ce cas

$$\sum \hat{a}x.MF = a$$
,

ou, en supprimant le facteur commun da.

(3)
$$\sum MF = \sigma_i$$

c'est-à-dire que la somme des moments des forces extérieures autour d'un axe quelconque est nulle.

3º Mouvement composé. — L'application du théorème du travail virtuel au cas d'un mouvement composé ne nous apprendrait rien de nouveau. En effet, le travail de chaque force, pour un mouvement de ce genre, est la somme des travaux qui correspondent aux mouvements composants. Par suite, la quantité qu'on devrait éguler à zéro serait la somme de deux quantités nulles séparément.

CHAPITRE III. — EQUILIBRE DES SYSTÈMES QUELCONQUES, ETC. 61 Ainsi :

Turonème général. — Quand un système matériel quelconque est en équilibre, sous l'influence de forces extérieures et intérieures quelconques :

1" La somme des projections des forces extérieures sur un

axe quelconque est égale à zéro;

2º La zomme des moments de ces mêmes forces extérieures par rapport à un axe quelconque est égale à zéro.

Cherchons toutes les équations que peuvent fournir les deux parties de ce théorème.

i* Équations dérivées du mouvement de translation. — Il est clair que si l'on écrit que la somme des projections des forces extérieures est nulle séparément sur trois axes rectangulaires, cette somme sera également nulle pour une direction quelconque, définie par les angles α, β, γ, qu'elle fait avec les axes coordonnés. En effet, la projection d'une force du système sur cette direction est, en appelant X, Y, Z, les projections respectives sur les trois axes,

$$F\cos A = X\cos \alpha + V\cos \beta + Z\cos \gamma$$
;

donc, la somme des projections des forces du système est, en metant cosα, cosβ, cosγ en facteurs,

$$\sum F\cos A = \cos \alpha \sum X + \cos \beta \sum Y + \cos \gamma \sum Z,$$

quantité qui sera toujours nulle si l'on a à la fois

(i)
$$\sum X = 0$$
, $\sum Y = 0$, $\sum Z = 0$.

2º Équations dérivées du mouvement de rotation. — De même, pour exprimer que la somme des moments des forces par rapport à un axe quelconque, passant en un point donné, est nulle, il suffit d'exprimer que cette somme est nulle pour trois axes rectangulaires qui se croisent sur ce point, ou qu'on a, en prénant nos notations habituelles,

(2)
$$\sum L = \alpha$$
, $\sum M = \alpha$, $\sum N = \alpha$;

PHENIERE SECTION. - STATIQUE.

car le moment G d'une force par rapport à un axe qui fait avec les axes des angles α , β , γ est

$$G = L \cos \alpha + M \cos \beta + N \cos \gamma$$
.

Quant aux axes qui ne passent pas par notre origine, il est facile de voir que la somme des moments des forces par rapport à ces axes est également nulle, nos équations (1) et (2) étant supposées satisfaites. En effet, nous aurons établi cette proposition, si nous prouvons que la somme des travaux des forces est nulle pour un mouvement virtuel de rotation autour d'un pareil axe. Or, un mouvement quelconque d'un solide peut toujours être décomposé en une rotation autour d'un axe passant en un point donné, et une translation dans une certaine direction; et les équations (1) et (2) établissent que la somme des travaux virtuels des forces extérieures est nulle pour chacun de ces deux mouvements élémentaires.

Des six équations de l'équilibre. — On voit qu'en définitive le théorème du travail virtuel, appliqué à tous les déplacements compatibles avec l'hypothèse de la parfaite rigidité du système auquel sont appliquées les forces que l'on considère, fournit six équations distinctes seulement:

(IV)
$$\begin{split} \sum \mathbf{F}_{s} &= \mathbf{o}, \\ \sum \mathbf{F}_{s} &= \mathbf{o}, \\ \sum \mathbf{F}_{s} &= \mathbf{o}, \\ \sum \mathbf{M}_{as} \mathbf{F} &= \mathbf{o}, \\ \sum \mathbf{M}_{as} \mathbf{F} &= \mathbf{o}, \\ \sum \mathbf{M}_{cs} \mathbf{F} &= \mathbf{o}. \end{split}$$

Ces équations portent le nom d'équations générales de l'équilibre; vraies pour un système quelconque, elles sont suffisantes pour l'équilibre des solides invariables.

Pour résumer cet important chapitre, nous rappellorons

qu'il faut distinguer avec soin l'équilibre des forces qui sont directement appliquées à un même point matériel, de l'équilibre qui existe entre des forces appliquées à certains points d'un système. Dans ce dernier cas on doit dire que les forces extérieures se font équilibre en vertu de la constitution physique du corps anquel ces forces sont appliquées (*). Mais on pourra dire sussi rigoureusement : Ces six équations de l'équilibre existent entre les forces extérieures seulement; et cela sans qu'il soit nécessaire de se préoccuper de la constitution du corps soumis à l'action de ces forces.

§ XI. - CAS PARTICULIERS DES ÉQUATIONS DE L'ÉQUILLBRE.

Les équations générales de l'équilibre se simplifient dans quelques cas particuliers quand les forces appliquées au système considéré satisfont à certaines conditions spéciales. Il arrive alors qu'un certain nombre des équations qui doivent être vérifiées par ces forces sont satisfaites d'elles-mêmes identiquement, et le nombre de celles dont il y a réellement à s'occuper se trouve diminué d'autant.

Les cas particuliers qu'il est intéressant de considérer sont au nombre de trois seulement.

Forces concourantes.

Il ne s'agit pas ici de forces appliquées à un même point, mais bien de forces dont les directions concourent. Par le point commun à toutes ces directions, menons trois axes quelconques; les trois équations des moments par rapport à

^(*) Les forces extéricares restant les mêmes, l'équilibre sersit rompu, si la constitution physique du système remait a changer; a'est ce qui arrive, par exemple, aux tiges metalliques qui se brisent sous un affort beaucoup moindre que coini qu'elles ont longtemps supporté, parce que la texture du métal s'est modifiée.

Quand des forces appliquées à un système quelconque se font equilibre, l'effet de ces forces est de tendre les liens du système, de développer des forces intérioures par l'intermediaire desqualles l'équillire s'établit, de manière que la résultante de touter les forces appliquées à chaque point soit nulle.

ces axes sont satisfaltes d'elles-mêmes; et il nous reste seulement pour l'équilibre les trois conditions

(V)
$$\begin{cases} \sum F_x = o, \\ \sum F_x = o, \\ \sum F_t = o. \end{cases}$$

On sait d'ailleurs par la théorie générale que les six équations de l'équilibre, étant ainsi vérifiées pour un système d'axes particulier, le sont également pour tous les autres systèmes.

Forces situées dans un même plan.

Prenons le plan qui contient toutes les forces pour plan des xy, l'axe des z passant par un point quelconque O de ce plan.

Les équations

$$\sum F_i = 0$$
, $\sum M_{\sigma\sigma} F = 0$, $\sum M_{\sigma\sigma} F = 0$

sont satisfaites d'elles-mêmes, puisque les forces sont toutes situées dans un plan perpendiculaire à l'axe des z, et que ce plan contient à la fois l'axe des x et l'axe des y. Ou a donc seulement trois équations d'équilibre

(VI)
$$\begin{cases} \sum F_z = \alpha_1 \\ \sum F_z = \alpha_k \\ \sum M_{\alpha z} F = \alpha_s \end{cases}$$

Forces parallèles.

Prenons l'axe des a parallèle à la direction commune des forces; il est clair que chacune de celles-ci aura une projection CHAPITRE III. — ÉQUILIBRE DES SYSTÈMES QUELCONQUES, ETC. 65 nulle sur les axes Ox et Oy, et un moment nul par rapport à l'axe Ox; il suffire donc pour l'équilibre qu'on ait

$$\begin{cases} \sum F_{\pm} = 0, \\ \sum M_{0x}F = 0, \\ \sum M_{0y}F = 0. \end{cases}$$

CRAPITRE IV. — EQUILIERE DES SOLIDES INVARIABLES. Nous écrirons ces équations sous la forme

CHAPITRE IV.

EQUILIBRE DES SOLIDES INVARIABLES.

§ XII. - DES FORCES ÉQUIVALENTES.

Le caractère des six équations de l'équilibre, ainsi que nous l'avons dit, c'est que ces équations, nécessaires et suffisantes pour le cas hypothétique d'un solide absolument invariable de forme, ont lieu pour un système quelconque; de sorte que, pour se rendre un compte exact des conditions de l'équilibre d'un système matériel, il y a en général deux choses à faire :

ro Vérifier si les six équations générales sont satisfaites;

2º Rechercher les conditions spéciales au cas dont on s'occope, qui dérivent de la nature physique des corps soumis aux forces considérées, et des liaisons qui existent entre ces corps.

Cela posé, il est évident qu'au point de vue de la vérification des six équations de l'équilibre, on aura le droit de remplacer un groupe de forces F par un autre groupe F', pourvu que les forces F' jouent, dans les équations (IV), identiquement le même rôle que les forces F. Il faut et il suffit pour cela que les forces F et F' aient les mêmes sommes de projections sur trois axes rectangulaires, et les mêmes sommes de moments par rapport à ces mêmes axes.

Deux groupes de forces jouissant de cette propriété sont dits équivalents; et il résulte de ce qui précède, que les équations nécessaires et suffisantes pour l'équivalence de deux systèmes de forces sont au nombre de six, comme les équations générales de l'équilibre.

$$\sum \mathbf{F}_x = \sum \mathbf{F}'_{ai}$$
 $\sum \mathbf{F}_r = \sum \mathbf{F}'_{ai}$
 $\sum \mathbf{F}_z = \sum \mathbf{F}'_{z,i}$
 $\sum \mathbf{M}_{ax} \mathbf{F} = \sum \mathbf{M}_{ax} \mathbf{F}'$
 $\sum \mathbf{M}_{ay} \mathbf{F} = \sum \mathbf{M}_{ay} \mathbf{F}'$
 $\sum \mathbf{M}_{ax} \mathbf{F} = \sum \mathbf{M}_{ax} \mathbf{F}'$

L'échange d'un groupe de forces par un groupe équivalent amène généralement la rupture de l'équilibre, à moins que le corps auquel ces forces sont appliquées ne soit un solide invariable; et, même dans ce cas, cette substitution modifie l'équilibre intérieur du solide, les tensions des liens, de sorte que, pour la détermination de ces quantités, il faudra conserver les forces telles qu'elles sont immédiatement données. Notre définition de l'équivalence est uniquement relative aux six équations de l'équilibre.

La notion de l'équivolence des forces permet de réduire à des systèmes plus simples des forces disposées d'une manière quelconque aux divers points d'un solide invariable. Cette théorie constitue un chapitre très-important de la Statique.

Résultante d'un système de forces concourantes.

Des forces en nombre quelconque, appliquées à un même point matériel, sont équivalentes à leur résultante. Il y a même dans ce cas équivalence physique complète, en même temps qu'équivalence géométrique; et l'on peut, sans altérer

^(*) Il résulte de ces équations qu'un obtient l'équilibre, quand à un système de forces on ajoute un système équivalent pris en sens opposé.

CHAPITRE IV. - ÉQUILIBRE DES SOLIDES INVABIABLES.

en rien l'état d'un corps en équilibre, remplacer par leur résultante des forces appliquées en un même point de ce corps.

Si nous considérons des forces dont les directions concourent en un point 0, mais dont les points d'application ne sont pas les mêmes, une force appliquée au point 0, ayant pour projections sur trois axes conduits par ce point les sommes des projections des forces concourantes données, est, d'après notre définition, équivalente à celles-ci. On lui donne le nom de résultante (*), bien qu'il puisse y avoir absurdité, dans certains cas, à demander de la substituer aux premières, même dans le cas où il s'agit d'un sollde invariable, le point 0 pouvant fort bien être en dehors du solide.

Il suffit pourtant qu'il y ait un point du solide sur la direction de cette force, pour qu'on puisse la substituer à ses composantes sans altérer l'équilibre; et, en général, une force, appliquée à un point d'un solide invariable en équilibre, peut être supposée appliquée en un point quelconque pris sur sa direction, pourva que ve point soit invariablement lié au solide (**).

Cette proposition est évidente par elle-même; et on la pose souvent comme une espèce d'axiome, tout au commencement de la Statique. Cette manière de procèder présente un certain inconvénient, car on s'habitue à faire abstraction du point d'application des forces, et à les considérer comme agissant indifférenment sur un point quelconque de leur direction. Or ceci est physiquement faux, et le déplacement du point d'application d'une force change l'équilibre intérieur du corps.

(*) Toutes les fais qu'il existe une forçe unique équivalente à un groupe quelcompa de forçes, on donne le cette forçe unique le nom de résultante. Il est juste de dire que cette acception du mot de résultante est la promière qui ait évintroduite dans la science, et que la signification géométrique que nous donnues a se mot, dans est enverge, est busicoup plus récente.

Quant aux forces fictives telles que les résultantes, etc., il est tout à fait rigoureux de dire qu'un point quelconque de leur direction peut être pris pour leur point d'application, car ces forces n'entrent jamais en ligne de compte, quand il s'agit de l'équilibre intérieur d'un corps.

Résultante d'un système de forces parallèles.

Des forces parallèles disposées d'une manière quelconque sont généralement susceptibles d'être remplacées par une force unique, laquelle reçoit, ainsi que nous l'avons dit, le nom de résultante.

Pour établir cette proposition, considérons d'abord (fig. 14) deux forces P, Q, de même sens, et appliquées, la première en A, la seconde en B. Proposons-nous de trouver une troisième force qui soit équivalente à leur ensemble. La projection de cette force sur un axe quelconque doit être égale à la somme des projections des deux premières. Or, si l'on prend pour axe de projection un axe perpendiculaire à la direction commune des deux forces, la somme de leurs projections est nulle, et il doit en être de même de celle de leur résultante; donc cette résultante doit être parallèle à ses composantes. Au contraire, la somme des projections sur un axe parallèle à AP est P + Q; donc l'intensité de la résultante est égale à P + Q. Il faut enfin que la somme des moments des composentes, par rapport à un axe perpendiculaire à leur plan, soit égale au moment de la résultante. Faisons posser cet axe par un point O de la résultante inconnue, le moment de la résultante sera nul; donc la somme algébrique des moments des deux composantes doit être nulle également. Il résulte de là que le point O doit être situé entre les forces; et si p et q sont ses distances respectives aux forces P et Q, on doit avoir

$$Pp = Qq$$
.

Dong :

Tunontun. — Deux forces parallèles et de même sens ont une résultante qui leur est parallèle et dirigée dans le même sens. Cette résultante est égale à leur somme et partage la

^(**) Quand un temporte une force du point A au point B (fig. 43), un change l'état du solide, puisqu'en introdutt une traction qui s'exerce sur la lique AB. Il faut denc, pour que la substitution soit physiquement possible, que la satere du corps lui permette de résister à la traction dont nous parlous. C'est ve qui prévera, par exemple, si les deux points à et B sont liés par un cordan; mais, dans catte hypothèse, on ne pourrait pas transporter de la même manière une force dont le seus serait opposé a ceiui de la force F.

CHAPITRE IV. - EQUILIBRE DES SOLIDES INVABIABLES.

ligne qui joint les points d'application de ces forces en parties inversement proportionnelles à leurs grandeurs P et O.

Cette dernière partie est évidente, car on a

$$\frac{\text{CA}}{\text{CB}} = \frac{p}{q} = \frac{\text{Q}}{\text{P}}$$

Le même raisonnement s'applique dans le cas où les forces sont dirigées en sens contraire l'une de l'autre (fig. 15).

Tutouime. — Deux forces parallèles et de sens contraires ont une résultante qui leur est parallèle et égale à leur différence. Elle agit dans le sens de la plus grande, et ses distances aux deux composantes sont dans le rapport inverse de ces forces (*).

Conditaire. — Un nombre quelconque de forces parallèles disposées comme on voudra, de même sens ou de sens différents, appliquées à différents points d'un solide invariable, admettent toujours une résultante unique.

Désignant par R la grandeur de cette résultante, par x_i et y_i les coordonnées du point où elle perce un plan perpendiculaire à la direction des composantes, plan pris pour celui des xy, on a_i pour déterminer ces trois inconnues, les équations

$$\sum F = R$$
,

$$\sum F_{y} = Ry_{i}$$

$$\sum \mathbf{F} x = \mathbf{R} x_{ii}$$

La résultante d'un système de forces parallèles jouit de propriétés fort intéressantes, sur lesquelles nous insisterons plus tard.

(*) Il résulte du ce qui précède que des forces agissant dans un même plan sur ou solide invariable sont toujours susceptibles d'être remplacées par une force unique, sauf le ces d'exception qui sera indiqué plus bes.

En effet, deux de ces forces, prises au hasard, sont parallèles ce coucenrantes : dans les deux ces on sait en trouver le résultante. En opérant ainsi de proche ou proche, un obtiendes la résultante définitive de système. Si cette résultante est nulle, les forces données su font équilibre. Cus d'exception. — Il existe un cas singulier dans lequel les résultats précédents se trouvent en défaut, et où il n'est pas possible de déterminer une force unique capable de remplacer des forces parallèles données.

Distinguons ces forces en deux groupes comprenant : le prentier, toutes celles qui agissent dans un certain sons; le deuxième, toutes celles qui agissent dans le sens opposé. Soit P la résultante des forces du premier groupe (fig. 15), O celle des forces du second.

D'après ce que nous avons vu, les deux forces P et Q, qui sont équivalentes à toutes les forces données, admettent ellesmêmes une résultante dont l'intensité est représentée par

$$P-Q$$

et dont la distance à la force P a pour expression, α étant la distance de P à Q.

$$p = a \frac{Q}{P - Q}$$

Si la différence P-Q est très-petite, l'intensité de la résultante est elle-même fort petite, et en même temps sa distance à l'une ou à l'autre de ses composantes grandit, et peut même dépasser telle longueur finie que l'on voudra. À la limite, si l'on fait P=Q, on trouve pour cette résultante une force nulle, appliquée à l'infini, ce qui n'a plus de sens.

Ce cas d'exception est tout à fait l'analogue de celui qui s'est déjà présenté en Cinématique, à propos de la composition des rotations. La théorie générale ne nous apprend plus alors qu'une chose, c'est que, dans ce cas singulier, il n'y a plus de résultante unique, c'est-à-dire que deux forces égales parallèles, de sens contraire, mais non directement opposées, constituent un système sui generis, qui n'est pas susceptible d'être tenu en équilibre par une simple force. C'est le plus simple des systèmes non réductibles à une force unique.

Un pareil système porte le nom de couple (*). La considé-

^(*) Cost par analogie avec les comples de forces que nome ayans appelé en Cinématique couple de rotations l'ensamble de deux rotations qui un pouvent pas se remplacer par une rotation ontique.

guller jone un grand rôle dans la théorie de la réduction des

forces appliquées à un solide invariable, comme nous allons

CHAPITHE IV. - EQUILIBER DES SOLIDES INVARIABLES.

tions de l'équilibre, écrites par rapport à trois axes rectangulaires quelconques; et supposons d'abord que deux de ces axes nient été pris parallèles au plan du couple, le troisième étant dirigé perpendiculairement au plan.

Il est d'abord évident que la somme des projections des deux forces sur chacun des axes coordonnés est nulle, et que la même chose a lieu relativement à une droite quelconque.

En deuxième lieu, la somme des moments des deux mêmes forces autour d'une droite quelconque, parallèle à leur plan, est également nulle. En effet, le moment d'une force par rapport à une droite s'obtient en projetant la force sur un plan perpendiculaire à la droite, et faisant le produit de la proiection ainsi obtenue par sa distance au point suivant lequel se projette tout entière la droite ou axe par rapport auquel on cherche le moment.

Or, pour un axe parallèle au plan d'un couple, le plan de projection dont il est question dans la définition précédente est perpendiculaire au plan du couple; les deux forces de ce couple se projettent donc sur la même droite, et les deux projections occupent sur cette droite des longueurs égales, mais comptées dans un sens différent. Les moments de ces deux forces sont donc égaux en valeur absolue et de signes contraires, c'est-à-dire que leur somme algébrique est identiquement aulte.

Considérons enfin l'axe perpendiculaire au plan du couple, at supposons d'abord que sa projection O sur ce plan (fig. 16) laisse les deux forces P. P. d'un même côté. Soient p la distance du point O à la force AP, a la distance des droites AP, A.P.

La somme algébrique des moments des deux forces est

$$P_i(a+p) - Pp_i$$

c'est-a-dire simplement

pulsque P, est égal à P. Cette quantité Pa est indépendante de la position du point O dans le plan des deux forces.

Si la projection de l'axe tombait en un point O', situé entre les deux lignes AP, A.P., on aurait de même pour la somme

§ XIII. - THEORIE DES COUPLES.

le montrer d'après Poinsot.

Définition. - Pour abréger le discours, nous appellerons couple l'ensemble de deux forces égales, parallèles et contraires, mais non appliquées au même point.

Nous n'avons pas à nous inquiéter pour le moment de ce que peut être l'action de ces forces sur le corps auquel elles sont appliquées (*); nous sayons seulement que, quelle que soit cotte action, elle n'est pas de nature à être contre-balancée par celle d'aucone simple force, appliquée comme on voudra au même corps, et que, par conséquent, l'effort d'un couple ne peut être comparé d'aucune manière à celui d'une simple force.

L'idée de couple ne doit pas être séparée (du moins à l'endroit où en est actuellement notre exposition de la Mécanique rationnelle) de celle d'un corps solide en équilibre auquel le couple est appliqué. L'effet d'un couple, si l'on peut s'exprimer ainsi, c'est de tenir une certaine place dans les six équations de l'équilibre.

Considérons donc l'ensemble de deux forces qui constituent ce que nous nommons, pour abréger, un couple, et cherchens quels sont les termes qui leur correspondent dans les six équa-

^(*) On s'expose aux plus grandes seremes quand on vont chercher à se rendre compte de l'effet d'un couple appliqué à un solide libre. La détermination de cet effet est un problème important de Dynamique, que nous verreus en

Les commençants sont esses géneralement portés à essocier, saus trop savoir pourquoi, l'idéa de force à celle de imusiation, et l'idée de couple à celle de rotation, et à se représenter en conséquence l'effet d'un compte comme étant de faire tourner le solide auquel il est appliqué autour d'une perpendiculaire à son plan. Elen n'est plus faux que ces idées. Ainsi tout le monde soit qu'an jou de billard, une simple force appliquée à une bille produit à la fois un mouvement de translation et un mouvement de rotation.

CHAPITRE IV. - EQUILIBRE DES SOLIBES INVARIABLES.

des moments des deux forces, en appelant p' la distance du point O' à la force AP,

Pp'+P(a-p')=Pa;

donc :

Thronime 1. - La somme des moments des deux forces d'un couple, pur rapport à un axe quelconque perpendiculaire à leur plan, est constante.

Cette somme constante est représentée numériquement par le produit Pa, quantité qu'on désigne, pour abréger, sous le nom de moment du couple. La longueur a s'appelle le bras de levier du couple, et l'on voit que :

Le moment d'un couple est le produit de sa force par son bras de levier.

Ce produit doit être affecté d'un signe convenable, selon que la somme des moments des deux forces, à laquelle il est équivalent, est positive ou négative. On figure ordinairement (fig. 17) un couple en supposant les deux forces appliquées aux extrémités du bras de levier, ce qui est toujours permis; et on trouve facilement le signe du moment du couple, en considérant le bras de levier comme une barre rigide dont le milieu serait fixe; le moment est positif si le couple tend à faire tourner son bras de levier dans le sens positif, il est négatif dans le sens contraire.

J'ai déjà fait observer, dans un grand nombre de cas amalogues, qu'aucun des facteurs du produit Pa ne comporte à pruprement parler de signe : il faut prendre ces facteurs en valeur absolue, et affecter le produit du signe convenable. Pourtant, si l'une des quantités P on a dépendait d'une grandeur variable, il pourrait arriver que ce facteur changeat de signe, et fit ainsi changer le signe du moment déterminé pour certains sens de la force P et de la ligne a. L'Algèbre présente beaucoup d'exemples de faits de ce genre.

Equivalence des couples. - Pour que deux couples soient équivalents, il faut et il suffit, d'après ce qui vient d'être établi :

1" Que les plans des deux couples soient parallèles;

2º Que leurs moments soient égaux;

75 3º Enflu que les deux couples tendent à faire tourner leurs bras de levier respectifs dans le même sens.

On déduit de là la propriété fondamentale des couples de forces, laquelle s'énonce habituellement de la manière suivante:

THEOREME II. - On peut, sans changer l'effet d'un couple appliqué à un corps solide en équilibre, le transporter dans son plan ou dans tout autre plan parallèle, le tourner comme on voudra dans ces divers plans, et même changer à volonté sa force ou son bras de levier, pourvu que le moment Pa conserve toujours la même valeur, et que les couples qu'on substitue ainsi l'un à l'autre soient de même sens.

Axe d'un couple. - Il suit de là qu'un couple est donné, c'est-à-dire qu'on a tout ce qu'on a hesoin de connaître, relativement à l'énergie du couple et à sa position dans l'espace, quand on connaît la direction de son plan, la grandeur de son moment, et enfin le sens de ce moment.

En conséquence, on représente un couple par une simple droite, qu'on appelle l'axe du couple. On prend cette droite perpendiculaire au plan du couple, on lui donne une longueur proportionnelle à son moment; enfin on est convenu d'affecter à cette longueur un sens tel, qu'un observateur placé suivant cet axe, les pieds à l'origine, voie le couple tendre à faire tourner son bras de levier, supposé fixé par son milieu, dans le sens que nous avons adopté pour sens positif.

On voit que l'axe d'un couple n'occupe pas une position déterminée dans l'espace; on peut toujours le faire passer par un point pris arbitrairement d'une manière quelconque.

Projection des couples. - Il nous reste encore à donner l'expression de la somme des moments des forces d'un couple G (fig. 18), par rapport à un axe quelconque Ox. Pour cela, projetons ces forces sur un plan perpendiculaire à cet axe : on obtient ainsi un nouveau couple 6', et il est clair que le moment de ce couple représente précisément la somme cherchée.

Cela posé, remarquons que le moment d'un couple peut être représenté par la surface du parallélogramme dont les forces sont les côtés opposés. Or l'aire du parallélogramme qui

CHAPITRE IV. - ÉQUILIBRE DES SOLIDES INVARIABLES.

donne le moment de G' est le produit de l'aire du parallélogramme (G) par le cosinus de l'angle i formé par le plan du couple avec le plan de projection ; donc on a

$G' = G \cos i$.

Soit Ag l'axe du couple G : on peut aussi prendre pour cet axe la ligno égale et parallèle Ogi, qui passe par un point de 0z, et il résulte de l'équation précédente que l'axe du couple G'est la projection de Og, sur Oz; donc :

Tutoutus III. - La somme des moments des forces d'un coupla par rapport à une droite quelconque est la projection de l'axe du couple sur cette droite.

On voit que les moments des couples se représentent et se projettent absolument comme ceux des simples forces, avec cette différence toutefois que, dans le cas d'un couple, il n'y a qu'à s'inquiéter de la direction de l'axe par rapport auquel on considère les moments, et nullement de sa position dans l'espace.

Composition des couples.

On n'a pu s'empêcher de remarquer dès à présent l'analogie, ou plutôt l'identité parfaite qui existe, au point de vue de la forme mathématique, entre les théorèmes de la Cinématique et conx de la Statique. Cette identité est d'autant plus curleuse que ces deux sciences se rapportent à deux ordres d'idées absolument et essentiellement différents.

Ainsi les règles relatives à la composition des rotations se retrouvent ici comme présidant à la composition des forces. Les deux théories nous présentent le même cas singulier; et nous allons voir, pour continuer l'analogie, que les couples de forces se composent comme des couples de rotation, c'est-àdire comme des translations.

Composition des couples parallèles. - Rien n'empêche de s'arranger de façon que les forces P et Q des deux couples soient parallèles, et que leurs bras de levier soient égaux. Alors, si l'on fait coïncider les deux bras de levier, on a, à

chacune des extrémités de cette ligne, deux forces dont les directions se confondent, et qu'on peut par conséquent remplacer par une force unique dont l'intensité est la somme algébrique des intensités des forces des deux couples. Ces deux résultantes forment un couple équivalent à l'ensemble des deux couples donnés, et le moment

a(P+Q)

de ce couple est la somme des moments des couples composants. Done :

THEOREME IV. - Deux couples situés dans deux plans paraltèles sont équivalents à un couple unique dont le moment a pour valeur la somme algébrique des moments des couples composants.

Ce résultat s'énonce plus simplement un disant que l'axe du couple résultant est la somme des axes des couples compasants.

Composition des couples quelconques. - Soient maintenant à composer deux couples quelconques (fig. 19). Soit AG l'intorsection des plans de ces couples. Prenons sur cette intersection une longueur AB pour bras de levier communaux deux couples.

A chagune des deux extrémités du bras de levier, j'ai deux forces P. Q que je compose par la règle du parallélogramme. J'obtiens ainsi deux forces égales et contraires qui constituent un couple équivalent aux deux couples proposés. Done, deux couples, situés comme on voudra dans deux plans qui se coupent sous un angle quelconque, se composent toujours en un soul, dont le plan passe par l'intersection des plans des deux premiers couples, et par la diagonale du parallélogramme construit sur les forces qui constituent ces couples.

Il est très-facile de démontrer que l'axe du couple resultant est la diagonale du parallélogramme construit sur les axes des couples composants.

En effet, le plan PQ peut être regardé comme étant perpendiculaire à l'intersection AG, puisqu'un a le droit de tourner comme on yout des couples dans leur plan. Faisons une projection sur ce plan (fig. 20). Nous avons un parallélogramme dont les côtés sont P et Q, et dont la diagonale est la résultante R. Pour avoir l'axe du couple P, il fout prendre sur une perpendiculaire à P une longueur AL proportionnelle à P; l'axe du couple Q et l'axe du couple résultant R s'obtiennent de même en portant sur des perpendiculaires à Q et à R des longueurs AM, AN, respectivement proportionnelles aux forces Q et R. Donc la figure ALNM est un parallélogramme dont AN est la diagonale, et par suite:

Turonten V. — Si deux couples sont représentés pour leurs axes et pour leurs grandeurs par les deux côtés d'un parallélogramme, ces deux couples se composent en un seul, représenté pour son axe et pour sa grandeur par la diagonale de ce parallélogramme.

Ayant démontré, comme nous venons de le faire, la règle du parallélogramme des axes, on en déduit immédiatement celles du parallélipipède et du polygone des axes pour la composition d'un nombre quelconque de couples, ainsi que la décomposition d'un couple en trois autres ayant pour axes trois directions rectangulaires.

Utilité des couples pour la composition des forces disposées d'une manière quelconque dans l'espace.

De même qu'an Cinématique les couples de rotation nous ont été d'une grande utilité pour la réduction des mouvements à leurs éléments les plus simples, de même en Statique, les couples vont nous permettre de réduire au plus petit nombre possible un système quelconque de forces agissant sur un corps solide. Voici comment la théorie des couples rend cette réduction facile et élégante.

Une force F, étant appliquée en un point A d'un corps ou système solide quelconque (fig. 21), si l'on prend un autre point quelconque O dans ce corps (ou au dehors, pourvu qu'on l'y suppose invariablement attaché), et qu'on applique à ce nouveau point deux forces contraires, égales et parallèles à la première, il est clair que l'état du corps ne sera pas

changé. Mais on pourre considérer actuellement, au lieu de la simple force proposée :

1º Une force parfaitement égale, parallèle et de même sens, appliquée au nouveau point O;

2º Un couple formé par les deux forces paraitèles restantes. Si, pour plus de clarté, on transporte ce couple nilleurs, dans un plan quelconque paraitèle au sien, ce qui est permis, il ne restera au point dont il s'agit qu'une force parfaitement égale et paraitèle à la force primitive; laquelle n'est en quelque sorte que cette même force, qu'on y aurait transportée paraitèlement à elle-même.

On peut donc dire :

Tuborent VI. — Une force F, appliquée en un point A d'un solide invariable, peut être transportée parallèlement à ellemême en un autre point O du même solide, pourvu qu'on adjoigne à cette force ainsi transportée un couple situé dans un plan parallèle au plan FOA et ayant pour moment le produit de la force F par la distance du point O à la direction de cette force.

Considérons maintenant un système quelconque de forces, appliquées à un solide invariable, et transportons toutes ces forces en un même point O. Nous remplacerons ainsi le système des forces données par un système de forces égales et parallèles aux premières, et appliquées en un point du solide pris à volonté, système auquel il faudra joindre un nombre de couples égal au nombre des forces transportées.

Or, toutes les forces appliquées au point O se composent en une seule R; tous les couples peuvent de même être remplacés par un couple unique G; donc :

Théoneme VII. — Un système de forces quelconque, appliqué à un solide invariable, peut toujours être remplacé, et d'une infinité de manières, par une force unique et un couple unique.

La force R s'appelle la résultante de translation. La grandeur, la direction et le sens de cette force restent les mêmes, quel que soit le point pris pour origine. Ses composantes suivant trois axes rectangulaires conduits par cette origine sont:

$$X = \sum_{i} F_{x_i}$$

$$Y = \sum_{i} F_{y_i}$$

$$Z = \sum_{i} F_{x_i}$$

et l'on a, pour déterminer sa grandeur et les angles α , β , γ qu'elle fait avec les trois axes, les relations

$$R\cos \alpha = X$$
, $R\cos \beta = Y$, $R\cos \gamma = Z$,
 $R^{\alpha} = X^{\alpha} + Y^{\alpha} + Z^{\alpha}$,

Quant au couple résultant, il change évidemment avec l'origine. Les moments L, M, N des projections de ce couple sur les trois plans coordonnés, c'est-à-dire la projection de l'axe du couple sur les trois axes, sont, d'après les propriétés des systèmes équivalents, égaix aux sommes des moments des forces par rapport aux mêmes axes. On a donc

$$L = \sum M_{\alpha x} F,$$

$$M = \sum M_{\alpha y} F,$$

$$N = \sum M_{\alpha x} F;$$

d'où, en désignant par G l'axe du couple, par λ , μ , ν les angles de cet axe avec les axes coordonnés,

$$G\cos\lambda = L$$
, $G\cos\mu = M$, $G\cos\nu = N$,
 $G^2 = L^2 + M^2 + N^2$.

Axe du moment maximum. — Ce couple G, projeté sur un plan qui forme avec le sien un angle θ , est égal à $G\cos\theta$; il suit de là que:

Tutonias VIII. — De tous les uxes qui passent par une même origine, l'axe du couple résultant est celui par rapport auquel la somme des moments des forces est la plus granda. Theoreme IX. — La somme des moments est la même par rapport à tous les axes qui font un même angle avec celui du plus grand moment, ou qui forment une surface conique décrite autour de lui sous cet augle.

THEOREMS X. — La somme des moments est uulle par rapport à tous ceux qui font avec cet axe un angle droit, ou qui forment un plan perpendiculaire à sa direction.

Axe central. — Nous avons dit que si l'on change l'origine, la grandeur du couple résultant varie, en même temps que son axe (c'est-à-dire l'axe du moment maximum des forces) s'incline sur sa position primitive.

Cherchons les lois de cette double variation.

Au point où nous en sommes, l'analogie entre les théorèmes de la Cinématique et ceux de la Statique est si parfaite, que l'on peut, presque sons nouvelle démonstration, conclure que parmi toutes les manières dont on peut réduire les forces agissant sur un corps solide à un couple et une force unique, il en est une plus simple que toutes les autres, et dans laquelle l'axe du couple se confond avec la direction de la résultante de translation. C'est ce que nous démontrerons d'ailleurs facilement par une marche toute parcille à celle que nous avons suivie en Cinématique.

En effet, tout étant déjà réduit à la seule force R et au seul couple G, par rapport à un point connu A (fig. 22), imaginons qu'on décompose le couple G en deux autres. l'un G cosi, perpendiculaire à la direction de la résultante de translation, l'autre G sin i, dont le plan passe par cette direction AR.

Si dans ce plan, où se trouvent à la fois le couple G sin i et la force R, on transporte la force parallélement à elle-même de A en O, d'un tel côté et à une telle distance x que le couple Rx, né de cette translation, soit égal et contraire au couple G sin i et le détraise, il ne restera plus qué la seule force Rappliquée au nouveau point O, avec le seul couple G cos i, qui est dans un plan perpendiculaire à la direction de cette force. Done :

Thronism XI. — Tant de forces qu'on voudra sont toujours réductibles à une seule force et à un seul couple, dont le plan est perpendiculaire à la direction de la force. Le couple qui jouit de cette propriété, d'avoir son axe parallèle à la direction bien déterminée de la résultante de translation, est un minimum par ropport aux couples résultants qui se rapportent à une origine quelconque. En effet, le transport de la résultante, du point 0 en un point arbitraire A, donnera lieu à un couple dont le plan contiendra la direction OR, et dont l'axe sera par conséquent perpendiculaire à l'axe du couple que nous considérons : or la résultante de deux droites rectangulaires est plus grande que l'une et l'autre de ces droites. Donc le couple dont l'axe est dirigé suivant la ligne OR est un minimum.

Ceci démontre qu'il n'y a qu'une seule manière de réduire les forces à un système tel que celui que nous venons de définir.

Soit g le moment du couple minimum, nous avons trouvé

$$g = G \cos i$$

G étant le moment du couple résultant relatif à une origine quelconque, et i l'inclinaison de l'axe de ce couple sur la résultante de translation. Comme la valeur de g est indépendante de l'origine A, de laquelle nous sommes partis pour faire notre démonstration, en voit que:

Lu projection, sur la direction de la résultante de translution, de l'axe du couple résultant relatif à une origine quelconque, est constante.

On a d'ailleurs, si l'on se reporte aux expressions des cosinus des angles faits avec trois axes fixes quelconques par la résultante de translation et l'axe du couple résultant relatif à l'origine de ces trois axes,

$$\cos i = \frac{LX + MY + NZ}{RG},$$

d'où l'on tire

$$G\cos i = g = \frac{LX + MY + NZ}{R},$$

quantité constante quelle que soit l'origine choisie.

Il existe donc toujours un axe, dont la direction est celle de la résultante de translation, jouissant, comme on voit, de la propriété que la somme des moments par rapport à cet axe est à la fois un maximum relativement aux axes qui se croisent en l'un quelconque de ses points, et un minimum relativement à ceux qui donnent les moments maxima relatifs aux nutres points de l'espace. Cet axe s'appelle l'axe central des moments du système de forces (Poinsot): c'est l'analogue de l'axe spontané glissant de la Cinématique.

La dénomination d'axe central se trouvers pleinement justifiée si l'on observe qu'à des distances égales de cette droite les couples résultants ont des valeurs égales et que leurs axes

sont également inclinés sur cet axe OR.

En effet, de quelque côté qu'on transporte la résultante R à une distance x de l'axe central, on trouvera toujours l'axe du couple résultant en composant le couple g avec le couple perpendiculaire Rx, né du transport de la force R. On voit donc qu'en s'éloignant de cet axe on trouvera des couples toujours plus grands et croissant sans limite; mais chacun d'eux, estimé suivant la direction constante de la résultante de translation, donne une projection égale au couple minimum g.

Remarquons pourtant que, quand la résultante de translation est nulle, les couples résultants sont les mêmes pour tous les lieux de l'espace, et que leurs axes sont tous paralléles.

En écartant ce cas, les axes de divers couples résultants se classent autour de l'axe central en diverses surfaces d'hyperboloïdes de révolution, dont cette ligne est l'axe, et qui peuvent chacque occuper diverses positions en glissant le long de cet axe,

Pour tous les axes qui forment la surface d'un même hyperboloïde, ou de tous les hyperboloïdes éganx que nous avons définis, les moments maxima ont la même valeur, et ils varient d'une série à une autre, suivant les lois que nous avons données ci-dessus.

Des conditions de l'équilibre.

Nous avons vu comment on peut, d'une infinité de manières, remplacer par une force et un couple des forces en nombre quelconque, appliquées à un solide invariable. Ceta 6.

CHAPITRE IV. - ÉQUILIBRE DES SOLIDES INVARIABLES.

posé, comme une force ne saurait, dans aucun cas, faire équilibre à un couple, il est nécessaire, et aussi suffisant, pour l'équilibre, qu'en prénant pour origine un point quelconque et y transportant toutes les forces du système, la résultante R de toutes ces forces transportées soit nulle, et que le couple résultant G de tous les couples provenant de ces translations soit nussi nul.

Or, les équations qui expriment que la résultante de translation est nulle sont

$$X=0$$
, $Y=0$, $Z=0$.

Pour le couple résultant, on a les équations analogues

$$L=0$$
, $M=0$, $N=0$,

nécessaires et suffisantes pour que le couple résultant soit nul. Nous retembons ainsi sur nos six équations de l'équilibre, et nous les retrouvens sous la forme même qui nous a servi de point de départ.

Réduction des forces à deux équivalentes.

Plaçons-nous à une origine quelconque O (fig. 23), transportons-y la résultante de translation R, et arrangeons-nous de manière que l'une des forces P du couple résultant G passe également par le point O, ce qui est toujours possible d'une infinité de façons. Je puis composer les deux forces P et R en une seule R,, et il nous restera simplement, outre cette force, la deuxième force du couple que je désignerai par R₂. Donc :

Theoreme. — Un système quelconque de forces appliquées à un corps solide peut toujours se réduire à deux forces, dont l'une passe par un point pris à volonté dans le corps.

Si la résultante de translation n'est pas dans le plan du couple, les forces R, et R, ne sont pas dans un même plan; car, pour obtenir R,, on compose la force P, située dans le plan OR, avec une force R située dans un plan différent (*). La méthode qui consiste à réduire à deux équivalentes toutes les forces qui agissent sur un corps solide, au lieu de les remplacer par une force unique et un couple, a été trés-longtemps employée et l'est encore par un très-grand nombre d'auteurs. Quant à nous, nous ferons plus volontiers usage de la réduction à une force et à un couple, parce que cette méthode a l'avantage, très-grand à nos yeux, de mettre bien nettement en évidence la résultante de translation, force qui joue un très-grand rôle dans la Dynamique.

Il existe une infinité de manières de réduire des forces quelconques à deux équivalentes. Cette réduction est analogue au mode de représentation du mouvement le plus général d'un corps solide par la combinaison de deux rotations non situées dans un même plan; et les propriétés géométriques des deux systèmes sont identiques.

Cas d'une résultante unique. — Cherchons maintenant dans quels cas nous pourrons avoir une résultante unique. Pour que les forces du système puissent être remplacées par une force unique équivalente, il faut et il suffit qu'en nous plaçant à une origine quelconque, la résultante de translation soit située dans le plan du couple résultant, ou parallèle à ce plan, ce qui est la même chose.

Supposons, en effet, qu'il y ait une résultante unique appliquée en un point O (fig. 25). Cette résultante sera nécessairement égale à la résultante de translation. Transportonsnous à un autre point O'. Puisque nous admettons que toutes les forces du système peuvent être remplacées par la force unique R, il suffira de transporter cette force à la nouvelle origine, c'est-à-dire d'appliquer au point O' deux forces opposés égales et parallèles à R. Nous obtenous ainsi la résultante

^(*) Il est facile de démontrer que la réduction ne paut pas être pousses plus loin, c'est-à-dire de fairs voir que deux forces non situées dans le prême plan s'ent pas de résultante unique.

Supposons qu'il y ait une résultante et appliquons au solide une force 5 égale

et apposée à cette résultante (f_R, π_L) . Le système des trois forces B_L , B_L , S_L est en équilibre, et nons sevens que nons ne detrutrons pas l'equilibre en introduisant des linisons dans le système.

Or, nous pouvans, d'une infinité de manières, monse une droite AR qui rencontre R, et R,, sans rencontrer S.

En supposant que catte devite soit fixe, l'effet des forces R, et R, sera détrait, tandis que celui de la force S ne le sera pas. Donc l'équilibre ne saurait exister entre ces trais forces.

da translation transportée en O', et un couple (R, R.) que nous pouvons déplacer et transformer comme un couple ordinaire. Mais de quelque manière que nous le changions, son plan restera toujours parallèle à la résultante de translation R., D'ailleurs, tout autre mode d'opérer la réduction à une l'orce et à un couple en prenant O' pour l'origine ne peut évidemment conduire à un résultat différent; donc cette réduction des forces du système, effectuée par rapport à une origine quelconque, donners toujours un couple résultant dont le plan contiendra la résultante de translation (*).

Cette condition nécessaire doit en même temps être considérée comme suffisante : il faut toutefois excepter le cas où la résultante de translation serait nulle. Dans ce cas, en effet, tout se réduit à un simple couple qui ne saurait être remplacé par une force unique, à moins qu'on ne voulût considérer une force nulle située à l'infini, ce qui n'a plus aucun sens.

Cherchons analytiquement les conditions nécessaires pour qu'il y sit une résultante unique.

Prenons trois axes rectangulaires. Pour qu'il y ait une résultante unique R appliquée en un certain point, dont les coordonnées soient x_i, y_i, z_i , il faut que les projections de cette résultante soient égales à X_i, Y_i, Z_i , et que ses moments autour des trois axes soient respectivement égaux à L_i , M_i , N_i . Donc on doit avoir, en appelant X_i , Y_i , Z_i les projections de la résultante, et se reportant aux formules de la page 80.

(a)
$$\begin{cases} \mathbf{X} = \mathbf{X}_{i_1} & \mathbf{Y} = \mathbf{Y}_{i_2}, & \mathbf{Z} = \mathbf{Z}_{i_2} \\ \mathbf{L} = \mathbf{Z}_{i_2} \mathbf{y}_{i_2} - \mathbf{Y}_{i_2} \mathbf{z}_{i_2} \\ \mathbf{M} = \mathbf{X}_{i_2} \mathbf{z}_{i_2} - \mathbf{Z}_{i_2} \mathbf{z}_{i_2} \\ \mathbf{N} = \mathbf{Y}_{i_2} \mathbf{x}_{i_2} - \mathbf{y}_{i_2} \mathbf{X}_{i_2} \end{cases}$$

On a ainsi six équations à six inconnues, mais on sait à l'avance qu'il n'est pas possible que ces équations nous donnent des valeurs déterminées pour x_i , y_i , z_i . En effet, la résultante, si elle existe, peut à volonté être supposée appliquée en un point quelconque de sa direction, de sorte qu'il y a au mains l'une des trois coordonnées x_i , y_i , z_i qui reste arbitraire. Les équations (x) sont donc forcément absurdes ou indéterminées, au moins quant aux trois inconnues x_i , y_i , z_i . Il est facile d'éliminer à la fois les six inconnues. En effet, multiplions la quatrième équation par la première, la cinquième par la deuxième, la sixième par la troisième, et ajoutons les résultats, nous aurons

LX + MY + NZ = 0,

équation qui ne contient plus d'inconnue, et qui exprime la relation qui doit avoir lieu entre les résultantes partielles X, Y, Z et les trois moments partiels L, M, N, pour que les trois équations précédentes puissent subsister à la lois, et par conséquent pour que les forces du système sient une résultante.

Si cette équation de condition a lieu, les valeurs des trois coordonnées x_1, y_1, z_2 , se présenterent sous la forme $\frac{0}{0}$, parce que, la résultante pouvant être appliquée à tel point de sa direction qu'on voudra, îl est impossible que le calcul détermine l'un de ces points plutôt que tout autre. Il ne peut donc donner que leur lieu géométrique; et les trois dernières équations, en remplaçant X_1, Y_1, Z_1 respectivement par X_1, Y_2, Z_3 ne sont autre chose que les équations des trois projections de la résultante sur les plans coordonnés.

On pourra alors avoir à volonte un point quelconque de cette résultante, en se donnant l'une des coordonnées de ce point et déterminant les deux autres au moyen de deux des équations de la résultante.

Il y a cependant un cas dans lequel, bien que la condition

$$LX + MY + NZ = 0$$

soit remplie, le calcul ne donnera plus aucun résultat : c'est celui où les trois composantes X, Y, Z sont nulles en même temps, car on trouve dans cette hypothèse une résultante

^(*) Pour demontrer directement que, si la résultante de ternslation n'est pas dans le plan du coople, il ne peut y avoir de résultante unique, nous suppuserons, en employant un artifice de reisonnament qui nous est déjà conne, l'equilibre établi au moyen d'une force S égale et contraire à la résultante unique (fg. 26). Puis, meman dans le plan du couple une decite AB qui rescentre les deux forces du couple et la force S, sans rencontrer R, et considérant cute droite comme un axe fixe, nous mettrous nottement en évidence l'impossibilité de l'équilibre du système de forces que pous considérans.

nulle, située tout entière à l'infini. C'est qu'en effet, dans ce cas, les forces du système seront réduites aux trois couples dont les moments sont représentes par L, M, N, couples qui ne peuvent jamais se réduire qu'à un autre couple. C'est ce que devait nous apprendre et ce que nous apprend en effet le calcul.

§ XIV. — ÉQUILIBRE D'UN SOLIBE QUI N'EST PAS ABSOLUMENT LIBRE. — DES MACHINES.

Lorsque des forces réagissent les unes sur les autres par l'intermédiaire d'un corps ou système rigide parfaitement libre, il est impossible qu'elles se fassent équilibre, à moins qu'elles ne remplissent les six conditions que nous avons établies.

Au contraire, par le moyen des machines proprement dites, on peut mettre en équilibre des forces quelconques qui ne satisfont pas à toutes les conditions générales. Pour qu'un pareil résultat soit possible, il est nécessaire que les corps qui constituent les machines ne soient pas entièrement libres, mais qu'ils soient gênés par des obstacles. Ces obstacles, en rendant impossibles certains mouvements virtuels, dispensent par là même les forces du système de vérifier les relations correspondantes à ces mouvements.

En effet, on n'a point oublié que la condition nécessaire et suffisante pour l'équilibre des forces agissant sur un système donné, c'est que la somme des travaux virtuels de ces forces soit nulle, pour tout déplacement compatible avec les liaisons du système.

On peut, dans la théorie de l'équilibre des machines, laquelle n'est autre chose que la théorie de l'équilibre des corps génés par des obstacles, considérer les obstacles comme tenant lieu des forces égales et contraires à celles qu'ils détruisent actuellement; et si l'on conçoit qu'on ait ainsi substitué à la place de ces obstacles insurmontables des forces qui représentent leurs résistances actuelles, ce n'est plus entre les seules forces directement appliquées qu'il y a équilibre, mais entre ces forces et les résistances. Les six équations de l'équilibre doivent alors

chapitre iv. — équilière des solides invariables. 89 avoir lieu entre ces deux groupes de forces, considérés simultanément.

Des machines simples. — Nous réduirons les machines simples à trois principales, qui se distinguent l'une de l'autre par la nature de l'obstacle qui gêne le mouvement du corps; ce sont:

- 1º Le levier.
- 2º Le tour ou treuil,
- 3º Le plan incliné.

Dans la première machine, l'obstacle est un point fixe, autour duquel le corps a la liberté de tourner en tous sens.

Dans la deuxième, l'obstacle est une droite fixe, autour de laquelle tous les points du corps n'ont que la liberté de tourner dans des plans parallètes.

Dans la troisième, l'obstacle est un plan inébranlable contre lequel le corps s'appuie et sur lequel il a la liberté de glisser (*).

PREMIER CAS. - Equilibre du levier.

S'il y a un point fixe dans le système, les seuls mouvements possibles sont des mouvements de rotation autour des diverses droites qui passent par ce point; et on écrira que la somme des travaux virtuels des forces est nulle pour tout mouvement de ce genre, en posant, relativement à trois axes rectangulaires quelconques menés par le point fixe, les équations

c'est-à-dire que :

Pour l'équilibre du levier, il faut et il suffit que la somme des moments des forces soit nulle autour de trois axes rectangulaires qui se croisent au point d'appui.

p. 62

^(*) Commo on a d'abord considéré acta dernière machine par rapport aus corps pesants qu'on retient on équilibre sur des plans taclinés à l'horizon, on lui a donné, et elle a garda le nom de plan incliné.

Détermination de la charge de l'uppui dans le cas d'un levier en équilibre.

On peut raisonner autrement, de manière à déterminer la charge du point fixe, ce qui est très-important dans les applications.

Pour cela, imaginons à la place du point fixe une force unique R, qui remplace la résistance de ce point, et considérons le système comme parfaitement libre dans l'espace. Les six équations de l'équilibre devront avoir lieu, si l'on y introduit la force inconnue qui représente la réaction de l'appui.

Or, cette force, étant appliquée à l'origine, fournira trois nouvelles composantes X, Y, Z, dans la direction des trois axes, et ne fournira aucun couple nouveau dans les trois plans.

Les six équations de l'équilibre sont ainsi :

$$X+X_1=0$$
, $Y+Y_1=0$, $Z+Z_1=0$,
 $L=0$, $M=0$, $N=0$.

Les trois dernières équations ne renfermant pas d'inconnues sont les trois véritables conditions de l'équilibre.

La charge du point d'appui est, d'après le principe de Newton, égale à la résistance R, prise en sens contraire. Donc les composantes de cette charge sont

$$-X_{ii} - Y_{ij} - Z_{ij}$$

c'est-à-dire précisément

Dans l'équilibre du levier, la charge du point d'appui est une force égale à la résultante de translation de toutes les forces du système.

DEUXIGNE CAS. - Équilibre du treuil.

Supposons qu'il y ait deux points fixes dans le système, O, O' (fig, 27), c'est-à-dire que le corps n'ait que la liberté de tourner autour de l'axe OO'. Prenons l'un des points fixes, O, pour origine, et la droite OO' pour axe des x. Le seul mou-

rapitre iv. — équilibre pes sources invanishes. 91 vement-virtuel compatible avec l'invariabilité de la droite OO' étant une rotation autour de cette droite, on a, comme unique équation d'équilibre, la condition

Pour l'équilibre du trenil, il faut et il suffit que la somme des moments des forces par rapport à l'axe fixe soit nulle.

Charges des appuis.—L'équation L = o exprime la condition nécessaire et suffisante pour que toutes les forces du système soient réductibles à deux équivalentes, appliquées respectivement aux points 0 et 0'.

Les réactions R₁, R₂ des points d'appul sont égales et opposées à ces deux forces, et les six équations de l'équilibre doivent être satisfaites, si l'on joint aux forces données ces deux réactions inconnues.

Soient (fig. 28) X₁, Y₁, Z₁, X₂, Y₃, Z₃ les composantes de ces deux forces, à la distance 00'; on a

$$X + X_1 + X_2 = 0,$$

 $Y + Y_1 + Y_2 = 0,$
 $Z + Z_1 + Z_2 = 0;$
 $L = 0,$
 $M - aZ_1 = 0,$
 $N + aY_2 = 0,$

Parmi ces six équations, la quatrième ne contient pas d'inconnues; c'est l'équation d'équilibre que nous avons déjà dublie directement.

Quant à ce qui regarde les réactions, on tire aisément du système précédent les valeurs de Y_2 , Y_4 , Z_6 , Z_{11} mais ce même système détermine seulement la somme $X_1 + X_2$ des composantes longitudinales des actions des supports.

Pour comprendre à quoi tient cette indétermination, remarquons que les points 0 et 0', qu'on peut supposer réunis par une tige rigide, se prétent un appui réciproque, de manière que chacun d'eux a toujours, ou par lui-même ou par le secours de l'autre, la résistance dont il a besoin pour l'équilibre, pourvu que la somme de ces résistances soit suffisante. On ne

CHAPITRE IV. - EQUILIBRE DES SOLIDES INVARIABLES.

93

peut donc pas demander, et il est impossible que le calcul détermine des valeurs particulières pour deux résistances qui, passant en tout ou en partie de l'un à l'autre point, se confondent en une seule et même résistance. On comprend donc que nous ne puissions tirer de nos formules que la valeur de la somme ou de la résultante que nous devrons supposer appliquée au point de l'arbre où se trouve placé un obstacle destiné à s'opposer à tout déplacement dans le sens de la longueur de l'arbre (*).

Troisitus cas. - Equilibre du plan incliné.

Prenons le plan fixe pour plan des xy. Il n'y a pas à se préoccuper de la composante Z qui tend à faire sortir le corps du plan; mais il faut que l'on ait pour l'équilibre

Les couples L et M tendraient aussi à faire sortir le corps du plan; donc il faut simplement aux équations précédentes sjouter la condition

Il y a en tout trois équations d'équilibre. Elles expriment que les forces données sont susceptibles d'être remplacées par une force unique (**), perpendiculaire au plan.

Charges des points d'appui. — Le corps repose sur le plan par un certain nombre de points. Voyons si nous pourrons déterminer les charges de ces divers points.

$$LX + MY + NZ = 0$$

Nous savons que quand un corps repose sur un plan sur lequel il a la liberté de se mouvoir, il se développe en chaque point de contact une réaction normale à la surface, c'est-à-dire parallèle à notre axe des z. Si donc nous appelons x_i , y_i les coordonnées de l'un quelconque des points d'appui, \mathbf{Z}_i la réaction de ce point, les équations de l'équilibre seront

$$X = 0,$$

$$Y = 0,$$

$$Z + \sum Z_i = 0,$$

$$L + \sum Z_i y_i = 0,$$

$$M - \sum Z_i x_i = 0,$$

$$N = 0.$$

Nous avons trois équations seulement pour déterminer les charges de tous les points d'appui, et il faut distinguer plusieurs tas.

r° S'il n'y a qu'un point d'appui, et par suité qu'une seule réaction Z_i, on pourra l'éliminer entre les trois équations où elle figure. On sura deux nouvelles équations de l'équilibre, et une autre relation pour déterminer Z_i.

2º S'il y a deux points d'appui, il y a une nouvelle équation d'équilibre, et les charges de ces points sont encore déterminées.

3º S'il y a trois points d'appui, il n'y a plus de nouvelle équation de l'équilibre, les trois équations étant nécessaires pour déterminer les trois réactions.

4" Supposons enfin qu'il y ait un plus grand nombre de points d'appui. Dans ce cas, les charges de almoun de ces points sont Inderminées, paisqu'elles doivent seulement satisfaire oux trois équations

$$Z_i + \sum_i Z_i = 0,$$

$$L + \sum_i Z_i y_i = 0,$$

$$M - \sum_i Z_i x_i = 0,$$

^(*) Rappelons, avant de quitter ce sujet, que la détermination que mous venous de faire des pressions exercées sur des appuis par un corps qui n'a que le liberté de tourner autour d'un axe fixe, empose essentiellement que nous considérons le cas où ce corps est en équilibre. L'état de monvement mulifie profondément les pressions dont nous venous d'écrire les valeurs statiques. Il se produit alors un grand nombre de phénomènes dont quelques-mus sont de la plus haute importance au point de vue des applications pratiques. Nous aureum plus tard à nous étendre longuement aur cet ordra de questions.

^(**) Les équations X = 0, Y = 0, N = 0 entrainent effectivement la vérification de la condition nécessaire et suffisante pour l'existence d'une résultante auique, a savoir

CHAPITRE IV. - ÉQUILIBRE DES SOLIDES INVARIABLES.

de sorte qu'en pourra se donner les pressions de tous les points d'appul, hors trois, que les équations précédentes permettront de calculer.

Nous trouvons, d'après les principes établis ci-dessus, que les pressions sont indéterminées lorsqu'il y a plus de trois points d'appui; d'un autre côté, en considérant à priori un corps appuyé contre un plan par un nombre quelconque de points, et tenu en équilibre par une force normale à ce plan, il nous paratt évident que chaque point de contact doit être actuellement pressé, et que, s'il est pressé, c'est avec une certaine force tout à fait déterminée, ce qui serait absurde autrement; et de là il résulte une espèce de paradoxe assez difficile à expliquer.

L'indétermination est réelle dans le cas idéal où l'on considère un corps parfaitement rigide et inflexible, reposant sur un plan dont la résistance est pareillement indéfinie. Cette indétermination est du même ordre que celle qui règne sur le partage de la réaction longitudinale entre les deux tourillons d'un treuil.

Les choses se passent tout différemment dans la nature. Les réactions des points d'appui ont des valeurs parfaitement déterminées; seulement ces valeurs sont déterminées par autre chose que les équations générales de l'équilibre. Tous les corps sont plus ou moins flexibles et déformables; et, lorsqu'ils sont pressés sur un plan, la distribution de la pression entre les points d'appui a lieu en vertu des trois équations générales fournies par la Statique rationnelle, et des conditions qui, dans chaque cas particulier, résultent des propriétés physiques spéciales du système que l'on étudie.

Considérons une locomotive à six roues, conformément au type le plus répandu. Il est très-important de connaître les charges spéciales de chaque essieu, puisque nous savons que la puissance de la locomotive est en raison seulement de la fraction de son poids supportée par l'essieu moteur, et par les essieux, s'il y en a, dont les roues sont couplées avec les roues motrices. Or ces charges sont parfaitement déterminées, et on peut les mesurer en plaçant la locomotive sur un système de six petites bascules indépendantes, dont chacune supporte une roue et est maintenue en équilibre par un poids spécial.

Ce qu'il y a de curieux, c'est qu'on est le maître de modifier dans une certaine mesure les pressions individuelles qui s'exercent sur chacune des bascules; il suffit de serrer ou de desserrer l'un-des écrous des ressorts de suspension. Les réactions pourront ainsi prendre divers systèmes de valeurs; mais:

rº Ces valeurs, dans chaque cas, seront toujours parfaitement déterminées ;

2º Les divers systèmes satisferont toujours aux équations générales de l'équilibre (*).

Des machines composées.

Les machines les plus compliquées peuvent toutes être mmenées aux éléments simples que nous venons d'étudier. En les décomposant en leurs éléments simples, on trouvers dans tous les cas les conditions d'équilibre et les tensions des divers lieux.

Quand on voudra seulement la condition d'équilibre, la

(*) Supposons la condition d'équillbre satisfaite, et toutes les forces agissant sur la locomotive réduites à la force verticale P (fig. 29). En vorte de la symétrie, on peut considérer toutes les forces comme agissant dans le plan médian de la machine, et cele posé on a, entre la conditante P et les trois réactions, les écux équations.

$$Z_1 + Z_2 + Z_3 - P = 0$$
,
 $nZ_1 - hZ_2 + Pp = 0$,

es prenent les moments par rapport à l'essien médian O.

Dans les machines à balancier, la constitution du système est telle, que la repartition des pressions, au lieu d'être livrée au gré du mécanicieu, se fait seivant des règles imposées au constructour.

La machine repose sur ses trois essions par l'intermédiaire du trois balanciers dont les bous sont inégaux, r_1 , r_2 , r_3 dant les rapports respectifs des ireas.

Soit 5 Peffort qui s'exerce en a_1 on a on a', et par auite en c, r, z; on c' et en b, r, r, z; ordet on b', r, r, r, z. Puis

$$\mathbf{Z}_i \!=\! \langle (1+r_i) \, \boldsymbol{\xi}_i, \ \mathbf{Z}_i \!=\! r_i / (1+r_i) \, \boldsymbol{\xi}_i, \ \mathbf{Z}_i \!=\! r_i r_i \, (1+r_i) \, \boldsymbol{\xi}_i.$$

Nos équations déterminent z et font connaître une relation à laquelle les repports r_1 , r_2 , r_4 deivent satisfaire ; deux de ces rapports sont encore a noire disposition ; et par exemple, s'il s'agit d'une machine à trais esdeux enuplés, on parera faire en arts que les charges des trois essieux soient égales.

méthode la plus simple et la plus directe est fondée sur l'application du théorème du travail virtuel, ainsi que nous l'avons dit.

Nous réservons l'étude des machines les plus usuelles pour la deuxième Section de ce volume, afin d'introdoire tout de suite dans la théorie le calcul des résistances passives, dont nous n'avons pas encore donné la définition.

CHAPITRE V.

APPLICATIONS DE LA STATIQUE.

§ XV. — ÉQUILIBRE DES CORPS PESANTS.

En exposant la Statique générale, nous avons fait abstraction de la pesanteur, ou plutôt nous avons regardé le poids de chaque élément matériel comme une force directement appliquée à cet élément, et devant, au même titre que toutes les autres forces extérieures, figurer par ses projections et ses moments dans les équations générales de l'équilibre.

Dans les applications, il y a lieu de distinguer de toutes les autres cette force particulière qui joue un grand rôle dans toutes les machines, puisque son action s'exerce nécessairement sur toutes les pièces mobiles que l'on peut avoir à considérer.

Ce paragraphe est consacré à l'étude spéciale de la pesanteur.

Définition de la pesanteur ou gravité.

Les corps abandonnés librement à eux-mêmes dans le voisinage de la surface de la terre ne restent pas en repos, comme le voudrait la loi de l'inertie s'ils n'étaient soumis à aucune action. Ils tombent, c'est-à-dire qu'ils se mettent en mouvement dans une certaine direction. Nous en concluons qu'il existe une force agissant sur eux dans cette direction. Cette force a reçu le nom de pesanteur ou gravité. Su direction s'appelle la verticale.

Nous n'avons pas à nous occuper pour le moment des causes assez compliquées qui produisent la pesanteur; tout ce que nous pouvons faire, c'est d'en étudier expérimentalement les effets, en commençant par faire une étude grossière du phénomène dans ce qu'il a de plus apparent, afin d'en avoir une première idés, et de reconnaître quels sont les

GHAPITRE V. - APPLICATIONS DE LA STATIQUE.

points qui mériteront plus tard des recherches plus approfoudies, quand nous tiendrons à nous rendre compte des nuances

les plus délicates du phénomène.

L'étude des lois de la pesanteur a été faite pour la première fois par Galilée. On peut régarder comme un fait d'observation que, dans un même lieu, l'accélération imprimée par la pesanteur à un corps est constante, quel que soit le corps soumis à l'expérience, pourvu qu'on alt bien soin de soustraire ce corps, autant que possible, à l'action de toutes les autres forces qui pourraient masquer ou contrarier l'effet que l'on étudie; nous avons désigné cette accélération par g, de sorte que le poids d'un corps, c'est-à-dire l'action de la pesanteur sur ce corps en particulier, est liée à la masse de ce corps par la formule

p := mg.

Si donc nous considérons un corps solide de dimensions finies, quoique assez petites relativement à celles du globe terrestre, l'effet de la pesanteur sera d'attacher, pour ainsi dire, à chacun des points muériels qui constituent ce corps, une force proportionnelle à la masse de ce point. Ces forces pourront être regardées comme étant toutes parallèles et de même sens; elles ont donc une résultante unique, c'est-à-dire qu'il existera dans chaque position du corps solide une certaine force qui, convenablement appliquée, s'opposerait à tout mouvement qui tendrait à se produire en vertu de l'action de la pesanteur seule sur ce corps.

Nous avons dit qu'une résultante, force essentiellement fictive, n'avait pas, en général, de point d'application déterminé. On peut à volonté la supposer appliquée en un point quelconque du corps solide, situé sur sa propre direction. Cependant, dans le cas où l'on ne considère que des forces parallèles et de même sens, il y a sur la direction de leur résultante un point remarquable connu sous le nom de centre des forces parallèles, qui se distingue des autres points d'application fictifs par des propriétés particulières. C'est ce point qu'on a l'habitude de considérer comme le point d'application de la résultante des forces parallèles ; chose qui, d'allicurs, ne présente pus d'inconvénient, puisqu'on doit toujours sous-en-

tendre qu'une force quelconque, appliquée en un point d'un corps solide en équilibre, peut être transportée où l'on voudra sur sa direction, sans que l'équilibre soit rompu. Voici la définition et les propriétés du point dont nous parlons.

Centre des forces parallèles.

Pour composer un système quelconque de forces paraltèles, F, F', F", F" (fig. 30), appliquées aux divers points A, B, C, D,... d'un corps solide, on peut procéder de la manière suivante.

Composons d'abord les forces F et F'; elles ont une résultante R., qui teur est parellèle, égale à jour somme, let dont la direction passe par un point O, de AD, tel qu'on air

 $\frac{AO_{i}}{BO_{i}} = \frac{F}{F}$

Supposons cette résultante R, appliquée en Or sons-la avec la force F", nous aurons la resultante la forces F, F', F". En composant R, avec F", nous aurons la résultante des quatre forces F, F', F", F", etc..

Les positions des points O, O,, qu'on peut considérer comme les points d'application des résultantes partielles Ri. R,..., et par suite celle du point d'application O de la résultante définitive R, ne dépendent en aucune manière de la direction des forces; la connaissance des points A, B, C,..., auxquels les forces F, F', F",.... sont appliquées, et des rapports de grandeur de ces forces, suffit pour déterminer les points Q, O,..., O. On en conclut que si l'on changeait la direction des forces données, en les laissant toujours parallèles à ciles-mêmes et leur conservant leurs grandeurs respectives ainsi que leurs points d'application A, B, C, D,..., le point d'application O de la résultante na changerait pas. Ce point O, par lequel passe constamment la direction de la résultante d'un système de forces parallèles, de quelque manière qu'on incline les composantes par rapport à leur direction primitive, se nomme le centre du système des forces parallèles.

Rien n'est plus facile que de trouver les coordonnées de ce point. Prenons un système quelconque d'axes rectangulaires.

Soient x, y, z les coordonnées du point d'application de l'une des forces F du système dont la direction est arbitraire. Soient de même x,, y, z, les coordonnées du point d'application de la résultante R de ces forces.

On a d'abord

$$R = \sum F$$

Donnons aux forces une direction parallèle à l'axe des z, et exprimons que le moment de la résultante, par rapport à l'axe des y, est égal à la somme des moments des composantes. Le moment de la résultante est Rx; le moment de la force F est Fx; donc on a

$$\mathbf{R}\,x_i = \sum \mathbf{F}\,x_i$$

d'où l'on tire

$$x_i = \frac{\sum Fx}{\sum F},$$

et par analogie.

$$y_i = \frac{\sum \mathbf{F} y_i}{\sum \mathbf{F}}$$

$$z_i = \frac{\sum \mathbf{F} z}{\sum \mathbf{F}}$$

Centre de gravité.

Dans le cas où les forces parallèles appliquées au solide invariable sont les actions de la pesanteur sur les différents points matériels qui le composent, le centre des forces paraltèles prend le nom de centre de gravité. Nous ne pouvons pas, il est vrai, changer à volonté la direction de la pesanteur comme nous avons supposé qu'on le faisait pour arriver à la notion du centre des forces parallèles; mais nous pouvons latre quelque chose d'équivalent, en changeant la position du corps, ou en le tournant successivement de dissérentes manières.

Désignons par p le poids d'une molécule quelconque du solide; par x, y, z les coordonnées de cette molécule; par x_i , y_i , z_i les coordonnées du centre de gravité; enfin par P le poids total du solide; nous aurons, pour déterminer x_i , y_i , z_i les relations

$$x_i = \frac{\sum px}{p}$$
, $y_i = \frac{\sum py}{p}$, $z_i = \frac{\sum pz}{p}$.

Notre définition du centre de gravité est très-vicieuse, car elle semble subordonner l'existence de ce point à celle d'une résultante des actions de la pesanteur, actions qui ne sont parallèles et proportionnelles aux masses que quand le corps est très-petit. En outre, s'il s'agit d'un corps liquide, mou, déformable en un mot, ou même d'un ensemble de corps indépendants l'un de l'autre, comme le sont, par exemple, la Terre et la Lune, la résultante des actions de la pesanteur n'a plus aucun sens; et il n'y a plus de centre de gravité, si l'on donne à ce mot la signification qui résulte de notre définition.

Il est indispensable, au point de vue des applications à la Dynamique, où le centre de gravité (ou, comme dit Euler, le centre d'inertie) joue un si grand rôle, de donner une définition plus nette de ce point. Or, si nous représentons par m la masse de la molécule dont le poids est p, par M la masse totale du corps, nous pourrons, si le corps est petit, c'est-à-dire si le centre de gravité, défini comme nous l'avons fait, existe, remplacer p par mg, et P par Mg; en supprimant alors le facteur g sommun aux deux termes de chacune des fractions précédentes, nous arriverons aux formules

$$x_i = \frac{\sum mx}{M}$$
, $y_i = \frac{\sum my}{M}$, $z_i = \frac{\sum mz}{M}$ (*),

^(*) On énunes ordinairement ess équations en disant que la distance du reutre de gravité d'un système quelemque de corps, à un plan, est égale à la nume des moments des masses, par rappart au plan, divisée par la samma de toutes les masses, on entendant par la moment d'une masse per la distance de son contre de gravité au plan que l'ou considéré.

CHAPITER Y. - APPLICATIONS DE LA STATIQUE.

travail que développersit une force égale au poids total P du système, appliquée à son centre de gravité.

De là nous pouvons déduire un théorème important,

forment plus de traces de l'action de la pesanteur, que nous avions considérée pour arriver à la notion du centre de gravité. Donc, le point défini par ces nouvelles formules existera toujours; c'est lui que nous appellerons centre de gravité d'un système solide invariable quelconque. Ce ne sera le point d'application de la résultante des actions de la pesanteur, que

Nous observerons que ces dernières formules ne rep-

st le corps est suffisamment petit.

En même temps, cette définition s'étend sans difficulté au cas d'un système variable quelconque ou d'un ensemble de masses situées comme on voudra dans l'espace.

Nous ne donnerons dans cet ouvrage aucun détail sur la recherche des centres de gravité. Cette question est tout à fait du domaine de l'Analyse.

Travail de la pesanteur.

Supposons qu'un système matériel pesant quelconque soit en mouvement; la considération du centre de gravité fournit une expression simple du travail dû à l'action de la pesanteur sur les diverses parties de ce système.

Soient p le poids d'une molécule quelconque, z la distance de cette molécule à un plan horizontal supérieur, au commencement du temps pendant lequel on veut évaluer le travail. Soient de même P le poids total du système, et z, la distance du centre de gravité au même plan horizontal.

Le travail de la pesanteur sur la molécule que nous considérons est p dz, soit, pour tout le corps,

$$\sum p dz$$

Or, on a trouvé

$$\sum pz = Pz$$

d'où, en différentiant,

$$\sum p dz = P dz_i$$

Donc, le travail de la pesanteur sur le système est égal au

Loi générale de l'équilibre des corps pesants.

Supposons un système matériel, formé de corps pesants liés l'un à l'autre d'une manière quelconque, soumis à la seule action de la pesanteur, et reposant sur des appuis fixes quelconques.

D'après le théorème du travail virtuel, pour qu'un pareil système soit en équilibre, il faut et il suffit que la somme des travaux virtuels des forces extérieures, en ne tenant compte ni des liaisons, ni des appuis fixes, soit nulle pour tont déplacement compatible avec les liaisons du système. Or, dans le cas que nous considérons, le travail des forces extérieures se réduit au travail de la pesanteur; donc, il faut pour l'équilibre que l'on ait

$$P\delta z_i = v_i$$

P désignant le poids total du système, 32, le déplacement du centre de gravité suivant la verticale. Donc on doit avoir

et l'on peut énoncer le remarquable théorème que voici :

Théoreme. — Pour qu'un système pesant quelconque soit en équilibre, il faut et il suffit que pour tout mouvement compatible avec les liaisons, le centre de gravité reste dans un même plan horizontal (*).

On pout satisfaire de trois manières à cette condition. En général, il résulte des liaisons existant dans le système, que le centre de gravité ne peut se mouvoir que sur une certaine courbe ou une certaine surface. Il y aura équilibre, si le cen-

^(*) Ce theorème important, consequence directe du théorème du travail vistuel, ne dait êtra considéré comme rigourensement démontre que dans les cas perticuliers en nous avons démontré en théorème fondamental, c'est-a-dire quand les llaisons se réduisent aux genres tout spéciaux que nous avons considérès. Le cas général est en dehors du plan de ce Cours.

tre de gravité se trouve au point le plus haut, ou au point le plus has de la courbe ou de la surface qu'il peut parcourir, ou s'il est assujetti à rester toujours dans un même plan horizontal.

Nous aurons à revenir plus tard sur ces trois cas d'équilibre essentiellement différents. Dans le premier cas, on dit que l'équilibre est instable, parce que le système, écarté de sa position d'équilibre, tendrait à s'en écarter davantage pour tendre vers une autre position; dans le second cas, l'équilibre est dit stable, parce que le système, écarté un peu de sa position d'équilibre, tend à y revenir. Enfin, lorsque le centre de gravité se meut sur un plan horizontal, le système est en équilibre dans toutes ses positions. On dit à cause de cela que l'équilibre est indifférent. L'équilibre est encore indifférent quand le centre de gravité reste absolument fixe dans toutes les positions du système.

Ponts-levis à flèches. - On trouve une application de ce qui précède dans la construction des nonts-levis à flèches (fig. 31). Le tablier AB du pont est mobile autour d'un axe horizontal A; deux chaines BC partent des deux côtés du tablier, et vont s'attacher aux extrémités de deux flèches CQ, formant un cadre mobile autour d'un axe horizontal E; un contre-poids Q, supporté par les deux fléches, sert à équilibrer le poids du tablier. On prend la distance EC = AB, et on donne aux deux chaines BC une longueur égale à AE, de sorte que la figure ABCE est un parallélogramme dans toutes les positions que l'on peut donner au système, en faisant tourner les flèches autour de l'axe E et le tablier autour de l'axe A, sans que les chaines BC cessent d'être tendues. Il en résulte que dans un pareil mouvement, l'angle dont le tablier tourne autour de l'axe A est toujours égal à l'angle dont les flèches tournent en même temps autour de l'axe E. Soit G le centre de gravité du tabiler, G' calui des flèches et du contre-poids. Le poids Q est choisi de manière que EG' soit parallèle à AG. Il est aisé de voir que l'on peut s'arranger de manière que le centre de gravité de tout le système se trouve toujours en un point O situé sur la droite AE.

Le pont-levis ainsi constitué est en équilibre dans toutes les positions qu'on peut lui donner. Ponts-levis à sinusoides. — Au lieu d'accrocher les chaînes qui supportent le tablier d'un pont-levis à des flèches muntes d'un contre-poids, on peut faire passer des chaînes sur des ponlies placées au-dessus du tablier, et suspendre à leurs extrémités des contre-poids destinés à équilibrer le poids du tablier (fig. 32). On peut, en outre, obliger ce contre-poids à glisser le long de courbes fixes, afin que la tension de chaque chaîne varie suivant que le tablier du pont est plus ou moins relevé. Si l'on détermine ces courbes fixes de telle manière que le centre de gravité du tablier, des chaînes et des contre-poids reste toujours sur un même plan horizontal, le pont-levis sera en équilibre indifférent dans toutes les positions qu'on voudra lui faire prendre.

Nous avons négligé le frottement; il est d'ailleurs évident que si un pont-levis est disposé de munière à être en équilibre indifférent dans toutes les positions qu'on peut lui donner, en supposant qu'il ne se développe de frottement dans aucune de ses parties, il restera à plus forte raison en équilibre dans chacune de ces positions, lorsque les frottements exercent leur action.

§ XVI. — DES CORDES ET DU POLYGONE PUNICULAIRE.

Des cordes. — Au point de vue de la Mécanique rationnelle, les cordes, fils ou cordons doivent être considérés comme indéfiniment résistants et flexibles, absolument inextensibles, enfin comme dénués de pesanteur. (Je ne dis pas dénués de masse, car la masse n'a rien à faire dans les questions de Statique proprement dite.)

Tension d'un cordon. — Considérons (fig. 35) une portion rectilique de cordon, de longueur finis ou infiniment petite, en équilibre sous l'action de deux forces qui tirent ses deux extrémités. La condition nécessaire et suffisante pour l'équilibre est que les deux forces soient égales, contraires, directement opposées, et qu'elles tendent à allonger le cordon. De là les remarques suivantes:

r° Les forces extérieures satisfont d'elles-mêmes aux conditions générales de l'équilibre, absolument comme si elles étaient appliquées à un corps solide.

CHAPITER V. - APPLICATIONS DE LA STATIQUE.

107

ze La flexibilité du système împose une deuxième condition, c'est que le cordon soit tendu en ligne droite dans la direction commune des deux forces. On dit alors que les forces se font équilibre par l'intermédiaire de la tension du cordon.

3º Enfin, pratiquement, il y a une dernière condition tout aussi indispensable que les précédentes, c'est que le cordon, soit assez solide pour résister à l'effort qui tend à le rompre.

Imaginons le cordon coupé quelque part en C; la portion AC est en équilibre sous l'influence de la force P et de l'action de l'autre partie BC du cordon. Il faut donc que cette partie BC tienne lieu d'une force égale et directement opposée à P. Cette force est ce que l'on appelle la tension du cordon. Ici cette tension est constante dans toute l'étendue AB.

En général, on appelle tension d'une corde en un point C, la force qu'il faudrait appliquer en ce point pour maintenir l'une des portions de la corde en équilibre, l'autre portion étant censée supprimée. En vertu du principe de Newton, la réaction de AC sur BC est égale et contraire à l'action de BC sur AC. On confond donc, sous le nom de tension du cordon AB au point C, deux forces égales et contraires, qui se détruisent immédiatement au point C, dans l'équilibre de l'ensemble, mais qu'il devient nécessaire de considérer iso-lément, quand on étudie l'équilibre des deux portions séparées.

On peut mesurer la tension d'une corde en la coupant effectivement en un point, et interposant un dynamomètre entre les deux parties.

Équilibre d'un nœud réunissant plusieurs cordons.

Considérons maintenant un nœud réunissant trois cordons (fig. 36).

Il faut, pour l'équilibre de chaque cordon AD, qu'il y ait une force F dirigée dans le sens de la direction du cordon. Cette force fait connaître la tension de ce cordon, et il faut pour l'équilibre, conformément à ce que nous venons de voir, que les actions des deux autres cordons au point A siont une résultante égale et opposée à la force F.

Les forces F, F,, F,, c'est-à-dire les tensions t, t,, t, trans-

portées au point A, doivent donc se faire équilibre. Ainst, la tension t, doit être dirigée dans le plan F, F, suivant le prolongement de la diagonale du parallélogramme construit sur les tensions t, t,, et représentée par la longueur de cette diagonale. Le triangle ABE nous donne

$$t = t$$
, $\frac{\sin BAE}{\sin BEA}$,
 $t_1 = t$, $\frac{\sin ABE}{\sin BEA}$;

les tensions t et t, sont d'autant plus grandes que sin BEA est plus petit. Elles deviennent toutes deux infinies pour BEA = 0, ou DAE = 180 degrés.

Quelque petite que soit une force t₁ s'exerçant obliquement sur un cordon CD, il est donc impossible de tendre ce cordon en ligne droite.

Supposons maintenant (fig. 37) que nous ayons un cordon unique, et au point A un anneau dans lequel ce cordon puisse librement glisser; le cordon est tiré des deux côtés par des forces F., F.; l'anneau lui-même est soumis à l'action d'une force F. Cherchons les conditions d'équilibre. Fixons deux points quelconques C, D du cordon, l'un à gauche de l'anneau, l'autre à droite. Dans son mouvement virtuel, le point A, d'a près les liaisons introduites, ne peut que décrire une ellipse dont les points C et D seront les foyers. Il faut donc, pour l'équilibre, que la force qui agit sur l'anneau soit normale à cette ellipse, c'est-à-dire bissectrice de l'angle CAD.

En appliquant les formules posées précédemment à ce cas particulier, on trouve

From
$$F_1 = F_2 = \frac{F \sin \frac{\alpha}{n}}{\sin \alpha} = \frac{\int f \cos \alpha + 2 \cdot d \cos \frac{1}{n} d \cos \frac{1}{n} d \cos \frac{1}{n}}{2 \cdot \cos \frac{1}{n} a}$$

œ étant l'angle CAD, et F la force exercée sur l'anneau.

Nous concluons de là que si l'anneau est remplacé par un point fixe, la tension du cordon est la même de part et d'autre du point ou de l'anneau fixe, et la réaction de ce point fixe partage en deux parties égales l'angle des deux cordons.

CHAPITRE V. - APPLICATIONS DE LA STATIQUE.

constitution du système soumis à leur action. Telle est la première condition de l'équilibre du polygone funiculaire. Si cette condition n'est pas remplie, il sera impossible de trouver une forme convenable.

Deuxième condition. — En ayant égard aux propriétés des cordons tendus, il faut, pour l'équilibre, que les directions des côtés du polygone soient parallèles respectivement aux droites OB, OB, OB, OBz,..., partant du point O dans le polygone de Varignon.

Troisième condition. — Enfin, il faut que chaque côté puisse résister à la tension qu'il supporte, tension qui est encore donnée par le polygone de Varignon.

Ces trois genres de conditions, également nécessaires pour l'équilibre, se retrouveront dans toutes les questions de Statique appliquée.

Si nous remplaçons les forces F., F.... par des ameaux, la tension devra être la même dans toute l'étendue du cordon, et les forces exercées par les anneaux devront bissecter l'angle des deux côtés du polygone, adjacents au sommet où chacune d'elles est appliquée. Ces forces sont données par les formules

$$R = \pi T \cos \frac{1}{2} \alpha,$$

T étant la tension constante, a l'angle de deux côtés adjacents du polygone.

Considérons (fig. 40) trois sommets consécutifs A, B, C tels, que l'on ait AB = BC. Par ces trois points faisons passer une circonférence, et menons le diamètre BD. Nous aurons

$$BD = \frac{AB}{\cos \frac{1}{2}\alpha}$$

Donc, si nous avous un polygone funiculaire appuyé sur des points fixes et tels que les cordons soient égaux, la réaction en chaque point pourra être représentée par l'inverse du dismêtre BD du cercle passant par ce point et les deux sommets adjacents.

Nous concluons de là que si le polygone est tendu sur une courbe, la réaction peut être représentée en chaque point par l'inverse du rayon du cercle osculateur de la courbe, c'est-à-

Polygone funiculaire. — Considérons maintenant le cas général de l'équilibre d'un cordon soumis à l'action d'un nombre quelconque de forces (fig. 38).

D'après ce que nous avons vu, le cordon prendra la forme d'un polygone dont les sommets seront les points d'applica-

tion de ces forces. C'est ce qu'on appelle le polygone funicu-

Soient A₁, A₂, A₄,... les sommets du polygone funiculaire; F₁, F₂, F₃,... les forces appliquées à ces différents points.

Pour qu'il y ait équilibre, il faut évidemment qu'il y ait une certaine force F, appliquée dans la direction du premier côté du polygone (ou un point fixe remplaçant cette force); la tension T, do ce premier côté est égale à la force F. Pour qu'il y aft équilibre au point A, il faut que la tension T, du second côté soit égale et directement opposée à la diagonale du parallélogramme construit sur la force F, et sur la tension T, appliquée en A, De même, pour que le point A, soit en équilibre, il faut que la tension T, du côté A,A, soit égale et opposée à la diagonale du parallélogramme construit sur la force F, et sur la tension T, appliquée en A, Enfin, pour que le dernier sommet soit en équilibre, il faut qu'il y ait, appliquée au prolongement du cordon, une force égale et opposée à la diagonale du parallélogramme construit sur la force F, et la tension T, appliquée au point A,

Polygone de Varignou (fig. 39). — Toutes ces conditions d'équilibre du polygone funiculaire peuvent s'exprimer simplement per une construction géométrique élégante due à Varignon.

Par un point O quelconque de l'espace, menons une ligne OB_n égale et parallèle à F_n ou à T_n , par le point B_n one ligne B_nB_n égale et parallèle à F_n . La ligne B_nB_n représente la tension T_n . Si par le point B_n je mène B_nB_n égale et parallèle à F_n , en joignant OB_n j'aurai la tension T_n . En continuant alosi, j'arriverai à une ligne $B_{n-1}B_{n-1}$ égale et parallèle à F_{n-1} ; OB_{n-1} sero égale à T_{n-1} ou à F_n . En opérant ainsi, nous n'avons fait que construire le polygone des forces F_n , F_n , F_n . Il faut donc, pour l'équilibre, que ce polygone soit fermé. On vérifie ainsi la loi en vertu de laquelle les équations de l'équilibre doivent exister entre les forces extérieures seules, quelle que soit la

point.

CHAPITRE V. - APPLICATIONS DE LA STATIQUE.

111

dire par la courbure. Si le cordon, au lieu d'être tendu sur une courbe, est tendu sur une surface, c'est-à-dire tiré par ses extrémités; la partie intermédiaire s'appuyant sur une surface fixe, nous aurons encore la condition que la tension du cordon soit la même dans toute son étendue, et par conséquent que les deux forces extérieures appliquées à ses extrémités soient égales et contraires. De plus, considérons deux éléments consécutifs du cordon; ils devront être en équilibre sous l'influence de leur tension et de la réaction de la surface. Or. pour que trois forces soient en équilibre, il faut en premier lieu qu'elles soient dans un même plan. Donc, le plan des deux côtés consécutifs du cordon, ou le plan osculateur de la courbe, doit cue normal à la surface. Donc, enfin, le cordon doit s'appuyer sur la surface par une ligne dont le plan osculateur soit constamment normal à la surface. On sait que cette propriété définit la ligne la plus courte qu'il soit possible de

La théorie qui précéde s'applique à la poulie fixe, à la poulie mobile, aux diverses combinaisons de poulies mobiles dites moufles ou palans, etc.

tracer sur la surface entre deux quelconques de ses points; c'est la ligne géodésique, et la réaction de la surface est en

raison inverse du rayon de courbure de cette ligne en chaque

Cas d'un polygone chargé de poids.

Étudions spécialement le cas où les forces appliquées aux divers sommets sont parallèles et verticales (à l'exception des deux extrêmes qui sont toujours dirigées suivant les prolongements du premier et du dernier côté du polygone), de façon qu'on puisse considérer ces forces comme autant de poids suspendus au cordon. Supposons qu'il y ait un côté inférieur horizontal, et prenons le milieu de ce côté pour origine d'un axo horizontal et d'un axe vertical (fig. 41).

Scient : Q, la tension du côté horizontal, l., In., la les tensions des côtés successifs du polygone, p1, p2, ..., p4 les poids suspendus aux divers sommets. Il faut, pour l'équilibre du point A., que la résultante des tensions Q et 4, soit égale et opposée à la force verticale p_i ; de même, la résultante de t_i at t_j doit être égule et opposée à Z, et sinsi de suite. Enfin, si A. désigne la dernier sommet, il faut qu'on exerce en ce point, d'une manière ou d'une autre, une force égale à tant et dirigée suivant le prolongement du dernier côté.

Construction du polygone de Varignon. - Son OB, (fig. 42) une ligue horizontale égale à Q. Menons par le point B, une verticale sur laquelle nous porterons des longueurs B. B., B. B. . . . respectivement égales aux charges p. par . . . Les points B, B, B, ... représentent les sommets du polygone de Varignon, et les droites OB., OB., OB., . font connaître à la fois les directions des côtés du polygone funiculaire, et les emndeurs des tensions de ces côtés. On volt immédiatement sur la figure que les composantes horizontales de toutes les tensions sont égales à Q, et que, si P, représente la composante verticale de la tension du côté qui commence au sommet At, on a

 $P_i = p_i + p_i + \ldots + p_i$

On a donc les propriétés sulvantes :

I" La composante horizontale de la tension d'un côté quelconque est constante, et égale à la tension du côté horizontal.

2º La composante vertivale de la même tension est la somme des poids suspendus depuis le point le plus bas du demipolygone, jusqu'au sommet où commence le côté considéré.

3º La tension crott à mesure que l'on s'éloigne du côté horizontal, proportionnellement à la sécante de l'inclinaison du coté à l'horizon.

Des ponts suspendus.

La théorie des ponts suspendus est une conséquence immédiate des considérations qui précèdent. Le tablier d'un pont suspendu est en effet supporté par un certain nombre de tiges on de chaînes verticales à un câble en fil de fer dont les extrémités sont fixes.

Ce qui caractórise ces ponts, c'est que la figure du polygone. de suspension n'a aucune relation avec la forme du tablier, lequel peut être rigide ou non rigide, et qui présente généralement un profil à peu près horizontal ou légérement convexe vers le haut.

çais, cette surcharge doit être calculée à raison de 200 kilo-

Pour faire l'épure d'un pout suspendu, on commence par faire le projet du tablier, sans se préoccuper du polygone qui

doit le supporter. Le tablier proprement dit repose sur des

longrines, qui sont elles-mêmes soutenues par des poutrelles

transversales an a (fig. 43, 45 et 46), auxquelles sont directement appliquées les tiges de suspension. On suppose,

dans le calcul des conditions d'équilibre, que le tablier soit coupé à chaque demi-intervalle entre deux poutrelles ; l'équi-

libre subsistera à fortiori quand on rétablira la solidarité entre

les parties directement supportées par chaque tige. On calcula

l'écurrement des tiges, connaissant le poids du tablier et de

la surcharge, ainsi que le poids qu'on peut faire sans inconvé-

Rien de plus facile maintenant que de déterminer la direction d'un côté quelconque. Si l'on veut, par exemple, celle du

côté A, A., on prendra sur une horizontale quelconque, par

exemple sur le prolongement du côté horizontal du polygone,

une longueur DE = Q, et sur la verticale du point A, une longueur DF représentant la somme des poids p_1, p_2, p_3 des parties

du tablier suspendues aux points A., A., A.; en joignant les

points E et F, nous avons la direction du côté A, A., Nous ob-

tiendrons de même la direction de chaque côté, et par suite, connaissant le point A., nous pourrons construire le polygone.

Cotte épure donne à la fois les tensions des côtés, leurs longueurs respectives, l'inclinaison de chacun d'eux, et l'ordonnée du sommet correspondant du polygone, et par suite la longueur du polygone et celle de chacune des tiges de sus-

grammes par mètre carré de surface.

nient supporter à chaque tige.

pension.

GRAPITER V. - APPLICATIONS DE LA STATIQUE.

Dans le calcul des ponts suspendus, on néglige généralement, horizontales des côtés. Soient h, la projection horizontale au moins dans une première approximation, le poids du câble d'un côté, v, sa projection verticale, et P, la composante vertiuinsi que celui des tiges de suspension, pour ne s'occuper cale de la tension de ce côté; on a évidemment, d'après la que du polds supporté par ces tiges. Ce dernier poids se comconstruction précédente, pose du poids du tablier proprement dit, plus d'une surcharge $v_l = h_l \frac{P_l}{\Omega}$ représentant le poids qui peut charger le pont, dans les circonstances les plus défavorables. D'après les réglements fran-

Or, l'ordonnée d'un sommet quelconque A, est égale à la somme des projections des côtés qui précèdent ce sommet; donc, si V, désigne cette ordonnée, on aura

 $V_i = v_i + v_1 + \dots + v_{i-1}$

Oil

$$V_{\ell} = \frac{1}{Q} (P_{\ell}, h_{\ell} + P_{\ell}, h_{\ell} + ... + P_{\ell-1}, h_{\ell-1});$$

l'abscisse du même sommet est

$$H_i = h_i + h_i + h_i + \dots + h_{i-1}$$

2º Calcul des longueurs. - La longueur du côté qui commence à ce sommet est

ot l'on a pour la longueur totale du polygone

$$L_i = l_i + l_1 + \ldots + l_{i-1}$$

3º Calcul des tensions. - La tension t, du côté situé entre le itte sommet et le suivant est

$$t_i = \sqrt{Q^i + P_i^i}$$
.

4º Calcul des inclinaisons. - Enfin l'inclinaison a, du même côté sur l'horizontale est donnée par la formule

$$tang \alpha_i = \frac{P_i}{Q}(*).$$

Estimons par le calcul les éléments qui sont utiles.

(*) Détermination de la compounite horizontale des tensions. Tombés les quantités précédentes sont données en fonction de l'élément (), qui n'est pas une des données innaédiates du proidenre.

Ordinal coment, dams l'application, les données desquelles on part pour étahttp://es polygones sont he languouse de la corde et de la fléche, c'est-a-dire la double de l'abscisse et l'ordannée du dernier sommet. La fondan Q est Rec à

11,

¹º Calcul des ordonnées. - Les données sont les projections

Dans la plupart des cas, les formules précédentes se simplifient parce que les projections horizontales des côtés sont constantes, et que les poids supportés par chaque tige de suspension sont égaux.

On a done

$$P_i = ip$$
.

et on conclut de là

$$V_i = \frac{ph}{Q}(i-1)$$
, $V_i = \frac{ph}{Q}(i+2+...+i-1) = \frac{ph}{2Q}(i-1)$.

Soient # le poids du mêtre courant de tablier, on a

$$p = \pi h$$

d'où

$$V_i = \frac{\pi h^2}{20} (i^2 - i),$$

de sorte que si n désigne le numéro du deruler sommet, en a

$$V_{ij} = \frac{\pi h^{ij}}{2Q}(n^{ij} - n).$$

Cherchons l'équation d'une courbe passant par tous les sommets du polygone. Pour cela, prenons

$$V_{i=j}$$
, $ih = x$,

es quantités, quand on adopte les dispositions habituelles, par une équation

Dans tous les cas, on paut remarquer que, les espacements des tiges et les polds répartis étant enunus, l'équation qui donne la valeur de V, est de la forme

$$V_a = \frac{G}{0}$$

5il done, syant attribué arbitrairement à notre inconuce Q une certaine valaur Q', nous avons applique les constructions précédentes, et trouvé pour la dernière ordenuée une valeur V', au lieu de Va : nous devons avoir

$$\mathbf{v}_{n}' = \frac{\mathbf{c}}{\mathbf{Q}^{n}}$$

dian

$$\frac{Q}{Q'} = \frac{V'_n}{V_n}$$

equation qui détermine Q en fonction de Q'.

CHAPITRE V. - APPLICATIONS DE LA STATIOUE. ce qui revient à prendre pour origine l'extrémité gauche du côté horizontal; nous aurons alors

$$y = \frac{\pi}{20} (x^2 - hx).$$

Cette courbe représente une parabole. Si l'on veut reprendre le point A, pour origine, il suffit de changer dans l'équation précédente x en $x' + \frac{h}{2}$, et alors on obtient l'équation

$$y = \frac{\pi}{2Q} \left(x^{i_2} - \frac{h^i}{4} \right).$$

En faisant dans cette équation y = F, $x' = \frac{1}{2}O$, F et O dant la flèche et l'ouverture du pont, on trouve la tension O.

On trouverait immédiatement l'équation de la parabole du câble, en supposant le polygone formé de côtés infiniment petits, charges chacun d'un poids proportionnel à sa projection horizontale.

Considérous (fig. 44) l'arc de la courbe compris entre le point O où la tension est horizontale et égale à Q, et celui où cette tension est égale à T. Les forces extérieures qui doivent se faire équilibre sont la tension T, la tension 0 et le poids πx dont la direction passe par le milieu de OP.

Prenons les moments autour du point M, nous devrons avoir nour l'équilibre

$$Q_{r} = \frac{\pi x^{\dagger}}{2}$$
:

c'est l'équation de la parabole lieu des points M (*).

Il faut remarquer que les poids du câble et des tiges, que nous avons négligés, augmentent avec les dimensions du pont,

^(*) La théorie que nous remon de faire s'applique aux paute ampendes, à la gandition de négligos le poids des tiges de suspension et le poids des cables. Les formules trouvées précédemment permettent de trouver la langueur de charant des tiges. Il fant remarquer que ces tiges ne sont pas égales aux ordonnces de la parabole; elles doivent descendre jusqu'à la partie inférieure des poutrolles qu'elles débordent de qualques centimâtres pour recevoir les écrous any losquels s'appuie la charpente du pout (fig. 45). Ordinalrement aussi, le

D'oprès ce que nous avons vu, la composante horizontale de T $\frac{dx}{ds}$ doit être constante; donc on a

$$d\left(T\frac{dx}{ds}\right) = a$$

L'accroissement de la composante verticale doit être égal au poids de la chaluette compris entre deux points infiniment voisins; donc on «

$$d\left(T\frac{dy}{ds}\right) = p ds.$$

En éliminant T entre ces deux équations, on aura l'équation de la chaînette. La solution sera achevée dans le Cours d'Analyse.

§ XVII. — EQUILIBRE DES SYSTÈMES DE CORPS HIGIDES ARTICULES SANS PROTTEMENT.

Imaginons que plusieurs corps solides se touchent par des points qui ne peuvent se séparer; aucun frottement, aucun obstacle ne s'opposant d'ailleurs aux mouvements de rotation compatibles avec cette condition.

On peut se figurer chaque articulation comme produite par l'assemblage à genou. Ce mode de liaison se présentera trèssouvent dans la pratique; mais il est bien clair que l'équilibre établi dans le cas d'une liberté de mouvement complète subsistera à fortiori quand on remplacera le genou par une charnière, ou même par un assemblage analogue à ceux des pièces de charpente, assemblage qu'on est obligé de briser pour changer la forme du système. L'équilibre parattra encore mieux assuré quand on aura égard aux frottements, dont l'effet est, comme nous le verrons, de s'opposer à l'action de petites forces accidentelles tendant à meure les corps en mouvement dans un seus ou dans l'autre.

D'un autre côté, il convient que la stabilité des constructions en bois ou en fer soit indépendante de la solidité de assemblages et de l'existence des frottements, toutes choses qui viendront ainsi apporter utilement un surcroît de sécu-

et de plus influent sur la répartition des pressions, qui n'est plus du tout uniforme, comme nous l'avions supposé. La courbe qui porte les tiges n'est plus une parabole, elle se creuse du côté des culées. Il résulte de là que si l'on calculait le câble et les tiges pour la forme parabolique, et que l'on construisit le pont, l'équilibre ne serait pas possible, les articulations joueraient, et il en résulternit pour les diverses parties de la construction des tensions ou pressions complétement différentes de celles sur lesquelles on avait compté. La théorie précédente peut donc s'appliquer aux ponts ordinaires; mais pour les ouvrages plus importants, elle doit être notablement modifiée, et ne peut entrer dans un Cours élémentaire.

De la chaine.

On peut chercher quelle courbe prendra le câble sous l'influence seule de son poids. La forme qu'il affecte est une courbe étudiée en anniyse sous le nom de chaînette; nous pouvons trouver très-facilement ici les équations différentielles de cette courbe.

Soit en effet T la tension du cordon en un certain point; les composantes de la tension sont

$$T\frac{dx}{ds}$$
 et $T\frac{dy}{ds}$.

plancher affecte une forme parabolique (fig. 46), de sorte que les tiges sont composées de trois parties : 2º de l'ordannée de la parabole de la chaine,

$$V_i = \frac{\pi h^4}{4 Q} (i^0 - i);$$

20 d'une languour constante, D. qui separe to point la plus bas de cette perrabule du point le plus hant de la parabole inverse;

3º Kufin de l'erdonnes de cette parabole invuese,

$$m_i = \mu \left(i^* - I \right),$$

On a abud, pour la longueur totale des tiges,

$$\label{eq:definition} \partial_i = \mathbf{D} + \left(\frac{\pi \, h}{2 \, \mathbf{Q}} + n\right) \langle f - i \rangle.$$

L'abneline mit

$$\bullet \ \mathbf{H}_{i} = \frac{h}{2} + \left\langle i - \frac{d}{2} \right\rangle h = \left(i - \frac{1}{2} \right) h.$$

CHAPITRE Y. - APPLICATIONS DE LA STATIQUE.

rité; il y a donc lieu de considérer exclusivement les urticulations comme permettant tous les mouvements qui n'auraient pas pour effet de séparer l'un de l'autre les points des divers corps solides réunis par ces articulations.

Nous avons donc à étudier l'équilibre d'un certain nombre de corps qui, pris isolément, sont rigides (fig. 47). Chacun d'eux est réuni par deux articulations à d'autres corps rigides eux-mêmes, et pouvant être indifféremment fixes ou assujettle à des conditions apalogues.

Prenons en particulier l'un des corps du système. Il est soumis, indépendamment des réactions que les corps en contact exercent sur lui aux points d'articulation, à un certain nombre de forces extérieures au système, que je représenteral d'une manière générale par la lettre F (*).

Or, il est évident que je puis, sons altérer l'équilibre, regarder dans tous les cas les articulations comme absolument fixes, et si je désigne ces deux points par les lettres A et E. j'aurai pour la condition unique à laquelle les forces F sont assujetties pour l'équilibre

$\sum \Im U_{AB}\, F = 0.$

Cotte condition étant remplie pour le côté AB veut dire qu'il est possible de remplacer les forces F, et cela d'une infinité de manières, par deux équivalentes B, R, appliquées respectivement aux points A et B. Je dis d'une infinité de manières, parce que nous avons vu, dans le catcul des réactions exercées par deux appuis fixes, qu'il reste une certaine indétermination dans les valeurs des composantes de ces actions.

Considérons donc deux forces équivalentes quelconques it.

R:; nous aurons parfaitement le droit de les substituer aux forces F dans l'équilibre du corps rigide AB. Mais il faut bien se garder de considérer ces forces comme les réactions effectives des corps adjacents aux points AB. Nous savons seutement deux choses :

(° Que ces réactions inconnues S₀ S₁ se trouvent comprises parmi les systèmes équivalents en nombre infini II., R₁, qui sont tous possibles et qui sont les seuls possibles;

2º Que si les points A et B étaient absolument fixes, le corps AB étant toujours supposé rigide, on pourrait prendre indifféremment pour S₁, S₂ deux forces équivalentes conjuguées quelconques R₁, R₂.

Mais, dans le cas actuel, les points A et B ne sont pas fixes; ce qui veut dire que les conditions trouvées, en supposant leur fixité, sont toujours nécessaires, mais qu'elles ne sont plus suffisantes.

Il faut tenir compte des conditions nouvelles que nous trouverons en considérant l'ensemble du système en équilibre; nous l'erons ainsi disparaître l'indétermination, et nous déterminerons les véritables valeurs des réactions S₁, S₂.

Quoi qu'il en soit, nous avons commencé par étudier le corps AB pris isolément, ce qui nous a donné une condition d'équilibre

$$\sum \mathfrak{M}_{AB} \mathbf{F} = \alpha_*$$

et ce qui nous a permis de remplacer les forces F par leurs équivalentes R, R,.

Nous ferons la même chose pour chaque corps séparément, et alors en composant les forces qui sont appliquées à chacune des articulations, et les remplaçant en chacun de ces points par une force unique, nous aurons une sorte de polygone funiculaire dont les côtés sont rigides, et dont les sommets seuls sont soumis à l'action des forces.

L'équilibre du système articulé sera ainsi ramené à l'équilibre du polygone funiculaire, avec cette restriction en moins que les tensions des côtés d'un système articulé pourront être positives ou négatives, tandis que dans le cas du polygone funiculaire elles devraient nécessairement être positives.

En écrivant les conditions d'équilibre de polygone funiculaire, nous aurons :

1º Les nouvelles conditions d'équilibre auxquelles doivent satisfaire les forces R₁, R₂,..., et par conséquent les forces données F, F₁, F₂,...;

^(*) Les réactions des articulations pouvout être, anivant les ras, interioures on extérieures à l'ansemble du synéme; elles sont toujours extérieures à chaque comp isolé; ju un nontente de renvoyer aux définitions de la page 28.

2º Les tensions ou pressions qui s'exercent sur chacun des côtés du polygone, tractions ou pressions que l'équilibre de chaque côté isolé laissait précisément indéterminées, puisque cet équilibre donnait seulement la somme algébrique X + X' des réactions longitudinales aux points A et B, et que nous pouvions à volonté, en transportant ces réactions d'un côté à l'autre de la barre, remplacer une tension par une pression.

Cette méthode ne donne pas directement l'action de chacun des corps l'un sur l'autre. Or, ces actions sont très-importantes à connaître, beaucoup plus, souvent, que les tractions ou pressions qui s'exercent sur les côtés du polygone. En effet, la statique des solides naturels nous offre deux genres de questions, celles qui ont rapport à la forme d'équilibre proprement dite, et celles dans lesquelles on demande l'état d'équilibre intérieur du solide, c'est-à-dire les forces qui s'exercent entre ses diverses parties. Or, si l'on peut, pour la première étude, remplacer des forces extérieures données par leurs équivalentes, cette substitution n'est plus possible pour la seconde, et il faut appliquer la théorie de la résistance des matériaux, théorie qui n'entre pas dans le programme de l'École Polytechnique. Ou considérera chaque côté rigide du polygone articulé comme soumis à l'action des forces extérieures qui lui sont directement appliquées, et des réactions des corps voisins, qu'on aura calculées préalablement. Les tensions obtenues par la première méthodo donnergient une idée absolument fausse des efforts supportés par les éléments des solides, parce qu'on a remplacé des forces par leurs équivalentes, ce qui n'est pas permis.

Mais on peut traiter directement l'équilibre des systèmes articulés, en introduisant les réactions inconnues des différents côtés l'un sur l'autre, ainsi que celles des appuis, et appliquant ensuite les équations générales de l'équilibre à chaque côté séparément et à l'ensemble du système. Il ne faudra pas oublier que l'action du côté I sur le côté II est toujours égale et directement opposée à l'action du côté II sur le côté I. On obtiendra ainsi un certain nombre d'équations qui détermineront les réactions inconnues, et qui, s'il y a lieu, feront connaître, par l'élimination de toutes les quantités dont on

dispose, les conditions auxquelles les forces données devront satisfaire pour l'équilibre.

On s'est horné dans le Cours à ces quelques indications sur ces questions importantes dans la théorie de la charpente. Bien qu'elles soient extrêmement simples, elles exigent cependant une attention très-soutenue si l'on veut bien se rendre compte de toutes les circonstances qui se présentent dans l'emploi des diverses méthodes qui conduisent à la solution (*).

§ XVIII. - INTRODUCTION A LA TRÉGIE DE LA RÉSISTANCE DES MATÉRIAUX.

L'objet de cette théorie est de donner autent que possible sux constructeurs des règles précises et sûres leur permettant de fixer les proportions et les dimensions des diverses parties qui constituent un édifice, une machine. Ce qui distingue ces problèmes de tous les autres, c'est que, lorsque l'on est en présence d'une construction à élever, et que la question d'en déterminer les proportions se trouve posée, il faut, coûte que coûte, en avoir une solution bonne ou mauvaise. Or, on peut y arriver de deux manières différentes.

La méthode des praticiens consiste à suivre les leçous des mattres expérimentés, et à étudier les modèles laissés par les anciens constructeurs. Chacun selon sa spécialité connaît les dimensions des constructions importantes du même genre qui sont célèbres par leurs heureuses dispositions et leur longue durée. Accidentellement on a vu périr des édifices, et, en se rendant bien compte des causes de leur destruction, on apprend à se mettre à l'abri de pareilles catastrophes, et l'on arrive assez ylte à poser deux limites plus ou moins rapprochées, entre lesquelles on pourra se tenir sans craindre de compromettre la solidité de son œuvre d'une part, et d'autre part sans gaspiller inutilement l'argent, la main-d'œuvre, les matériaux. Par exemple, on yout faire un mur d'escarpe, destiné d'une manière régulière à supporter une certaine charge

^(*) On trouvers a la fin de ca Chaptire une Note sur la balance de Roberval et la balance de Quinteux, dont la théorie devenit se placer lei.

de terre, et, à un moment donné, à résister autant que possible au choc des boulets; on a des modèles laissés par Vauben dans les circonstances les plus variées; on les connaît, on les étudie, on cherche quel est celui d'entre eux duquel on se rapproche le plus sous le rapport des terrains, des matériaux de construction, du climat, etc.; c'est celui-là qui servira de modèle, avec les modifications commandées par les circonstances, qui ne sauraient, dans deux cas différents, se retrouver tout à fait identiques. Il faut, pour appliquer ces méthodes, un certain esprit de rapprochement, de combinaison, de calcul, joint à de longués études préparatoires aussi solldes que variées; c'est tout cela qu'on appelle de la pratique.

Il est clair que ces procédés, qu'on aurait grand tort de flétrir inconsidérément du nom de routine, suffiront dans un grand nombre de cas. Si l'on veut, par exemple, construire une maison à Paris, on pourra sans grandes difficultés arriver à faire une maison qui durera plus ou moins; peut-être n'aurat-on pas apporté dans certains détails toute l'économie possible, toute la perfection désirable, mais ce sont là des considérations un peu secondaires; le but que l'on se proposait est rempli, on a fait une construction stable.

Malheureusement, ces ressources font trop souvent défaut. Quand on se trouve en présence de constructions qui répondent à des besoins inconnus d'une autre époque, ou encore de matériaux nouveaux, comme le fer, la fonte, le zinc, et nombre d'autres éléments qui s'introduisent maintenant dans les constructions, la pratique n'est plus guère d'aucune utilité, et il faut chercher autre chose. On est obligé d'aborder directement la question au moyen de toutes les ressources que peuvent fournir l'expérience et la théorie. Voici quelle est à peu près la marche à suivre. On fait d'abord une étude physique et expérimentale, non pas précisément de la question en elle-même, qui est rarement abordable, mais des éléments simples de cette question. Veut-on, par exemple, faire un pont en fer, on étudiera les propriétés des matériaux qu'on doit employer, an point de vue spécial des conditions où ces matérianx vont se trouver placés; la forme la plus convenable à donner à la construction pour que chaque partie soit dans les meilleures conditions de résistance et de durée; les précautions à prendre pour se tenir en garde contre certains accidents, ou du moins pour en atténuer les effets, etc. Puis, on posera une bypothèse simple, représentant avec une exactitude suffisante les données de l'observation; et l'on appliquem le calcul en le fondant sur cette hypothèse qu'on aura soin de mettre nettement en évidence sans déguiser son côté faible et plus ou moins douteux. Enfin, il faudra terminer par la vérification expérimentale des résultats du calcul, et ces résultats ne devront être regardés comme vrais que dans les limites pour lesquelles la pratique les oura vérifiés.

Equilibre des solides naturels.

En établissant les conditions nécessaires et suffisantes pour l'équilibre des corps solides supposés invariables, nous avons dit que les corps communément appelés solides, et que nons distinguons des précédents par l'épithète de naturels, doivent être considérés comme susceptibles de céder dans une certaine mesure à l'action des forces auxquelles ils sont soumis; et que même, dans le cas où la déformation produite est invisible à l'œil, elle se révéle à neus par des phénomènes dont la théorie va nous occuper.

Quoi qu'il en soit, les équations de l'équilibre d'un solide invariable s'appliquent aux solides naturels, et si les efforts qui sont en jeu ne sont pas très-considérables, eu égard à la résistance du solide qui les supporte, on pourra indifféremment, pour poser les équations générales auxqueiles doivent satisfaire les forces extérieures, prendre le solide qu'on étudie avec la forme qu'il possédoit avant qu'il fût soumis à l'action de ces forces, ou bien lui attribuer la forme qu'il a prise sous leur action.

Dans la plupart des cas, on opère de la première manière; c'est-à-dire que, dans la recherche des relations auxquelles doivent satisfaire les forces extérieures appliquées au solide pour qu'il y ait équilibre, on regarde ce solide comme ayant, sous l'action des forces, exactement la même forme qu'il avait avant d'être soumis à cette action. Seulement, après avoir ainsi déterminé toutes les conditions d'équilibre où n'entrent que

les forces extérieures en négligeant la déformation du solide, il faudra se préoccuper des nouvelles conditions qui résultent de la constitution physique du solide, c'est-à-dire calculer les tensions et les pressions qui se développent dans ses diverses parties, afin de voir, comme dans le polygone funi-culaire, si ces tensions ou ces pressions sont ce qu'elles doivent être pour l'équilibre. Enfin, il faudra s'assurer que ces tensions ou ces pressions ne sont pas assez fortes pour briser le solide, ou pour lui faire subir une modification essentielle dans son état et ses propriétés.

Le calcul de ces réactions ou forces intérieures est lié intimement à l'étude de la déformation du solide sous des efforts donnés. Ces deux parties constituent la théorie mathématique de la résistance des matériaux, théorie qu'il ne nous est pas même permis d'ébaucher dans ce Cours. Nous devons nous borner à donner un exemple d'un cas très-simple d'équilibre, afin d'indiquer l'esprit de la méthode et de signaler les écueils qui se présentent de toutes parts.

Application. — Équilibre d'un prisme élastique tiré. — Nous allons considérer le cas le plus simple où la résistance des matériaux soit mise en jeu : c'est celui d'un solide homogène de forme prismatique (tel qu'une pièce de bois de charpente ou une barre de fer), fixé à l'une de ses extrémités d'une manière quelconque, et soumis à son autre extrémité à l'action d'une force tendant à l'allonger.

L'expérience prouve que tous les corps de la nature peuvent céder dans une certaine mesure à l'action d'une pareille force. Vient-on ensuite à supprimer la force, le corps, en vertu de son élasticité, tend plus ou moins à revenir à sa forme primitive, et l'on peut admettre avec une exactitude suffisante que, tant que l'on n'a pas dépassé une certaine limite, dite limite d'élasticité, variable avec la nature et l'état du corps, celui-ci reprênd exactement sa forme et son état primitifs, sans que les propriétés essentielles aient été altérées d'une manière permanente par l'action de cet effort passager.

Voilà ce que nous apprend une étude superficielle. On la complétera en déterminant expérimentalement la valeur exacte de cette limite d'élasticité pour tous les corps employés dans l'industrie; car il est extrèmement important de se tenir dans les applications bien en deçà de cette limite. Une fois qu'on l'a dépassée, le corps a pour ainsi dire changé de nature, et l'on ne peut plus compter sur rien, du moins en général (*).

Résistance à la rapture.—On appelle ainsi le plus grand des efforts que puisse supporter, sans se rompre ou s'écraser complétement, un prisme solide tiré ou comprimé dans le sens de ses arêtes, et l'on admet que ce plus grand effort P demeure proportionnel à l'aire Ω de la section transversale du prisme, de sorte que la résistance R s'exprime en kilogrammes par mêtre carré ou millimètre carré, et que l'effort de rupture d'un prisme est re présenté par

$P = R\Omega$

On n'a pas tardé à reconnaître, ce qu'on aurait d'ailleurs pu prédire à l'avance, que la limite d'élasticité était quelque chose de très-vague. En réalité les charges les plus minimes produisent toujours un allongement permanent, c'est-à-dire qui persiste après que la charge est supprimée. D'un autre côté, la détermination de cette limite exacte, à supposer que rela fût possible, ne présenterait pas, au point de vue des applications, un intérêt bien considérable, car il faut toujours prévoir des efforts accidentels venant s'ajouter aux charges ordinaires, de sorte qu'on doit toujours so tenir assez loin en deçà de la limite d'élasticité, de crainte de la voir dépasser à un moment donné.

Mais en même temps que ces difficultés se sont fait jour, les nouvelles constructions se sont multipliées. On a requis de la pratique, et l'on est maintenant assez généralement d'accord sur les charges pratiques qu'il convient de faire supporter aux matériaux dont l'usage est le plus fréquent.

Reprenous motre solide étiré, et chérébons ses conditions d'équilibre (fig. 48).

^(*) Cartaines opérations industriolies, telles que le martelage, le leminage, l'étirage des motitux ductiles, out un contentre pour leut de depasser la limite d'étailéte de ces, corps, de manière à changes leur forme d'une manière motable.

On sait que ces opérations modifient les mesons la plupart des propriètés physiques des corps qué y sont sommis.

CHAPITRE V. - APPLICATIONS DE LA STATIQUE.

127

Soit l'la longueur primitive du prisme. Sous l'influence de causes quelconques, cette longueur est actuellement devenue l + x; enfin, nous savons qu'à l'instant où l'on nous demande si le solide abandonné à lui-même restera en équilibre, une certaine force F agit sur son extrémité dans le sens de la Bèche. Il y a trois espèces de conditions d'équilibre:

ie Il doit y avoir équilibre entre les forces extérieures, c'està-dire entre la force F et les réactions du support.

2º L'équilibre n'a pas lieu directement entre ces deux forces; il a lieu par l'intermédiaire de la tension T de la barre; de sorte que la tranche extrême ab du solide est en équilibre sous l'action de la force F qui loi est immédiatement appliquée et de la réaction on force intérieure T, ce qui exige que l'on ait.

$$T = F$$
.

3º Il faut enfin que cette tension T ne soit pas assez grande pour briser le corps, ou même qu'elle ne dépasse pas la charge que la pratique a désignée comme la plus convenable pour la sécurité.

Occupons-nous de la seconde condition. L'expérience prouve que, tant qu'on n'a pas dépassé une certaine limite, la tension T est proportionnelle à l'allongement x, à la section Ω de la barre, et inversement proportionnelle à sa longueur primitive t; donc on a

$$T = \frac{E\Omega x}{I}$$

E étant un certain coefficient qui dépend de la nature du corps et que l'on appelle coefficient d'élasticité. De sorte que notre seconde condition s'exprime par l'équation

$$\mathbf{F} = \frac{\mathbf{E}\Omega x}{I}.$$

Il ya à peu près coïncidence entre la limite jusqu'à laquelle cette formule est applicable, et la limite d'élasticité dont nous avons parlé plus haut; si cette limite est dépassée, l'allongement, qui croit d'abord plus vite que la tension, peut croître au delà de toute limite, c'est-à-dire qu'il y a finalement rapture.

Le coefficient d'élasticité E dépend de la nature de la substance, de son état physique, etc. On peut donner une idée de ce coefficient. S'il était possible, en effet, d'avoir à la fois

$$x=l, \Omega=0$$

la loi de proportionnalité des efforts aux allongements subsistant toujours, on en déduirait

$$T = E$$
.

Donc Eest la tension qui serait capable de doubler la longueur d'une barre de 1 mêtre carré de section. La valeur exacte de ce coefficient a assez peu d'importance dans la pratique, parce que ce nombre est extrêmement grand. Ainsi, pour le fer, c'est 20000000000 de kilogrammes environ. Je renvoie aux Traités et aux Cours de physique pour la description des expériences très-remarquables par lesquelles M. Wertheim a mesuré les coefficients d'élasticité de divers corps, et a déterminé les lois des variations de ces coefficients avec la température. J'y renvoie également pour tous les détails qui n'intéressent pas directement les constructeurs.

Résistance à la compression. - Les lois de la compression sont les mêmes que celles de l'extension. On admet, pout-être sans preuves suffisantes, que le coefficient E conserve sensiblement la même valeur. Seulement la limite d'élasticité est plus rapprochée. La résistance à la rupture et la charge pratique sont ainsi généralement différentes de ce qu'elles sont dans le cas de l'extension. La rupture par compression peut être de trois sortes. Il peut y avoir : 1º rupture par flexion; c'est ce qui arrive quand on comprime à ses extrémités une barre de fer ou do bois suffisamment longue (fig. 50); 2º la rupture prismatique ou par glissement; c'est le mode de rupture de la fonte et des roches dures (fig. 49); enfin, 3º l'écrasement proprement dit; c'est la désagrégation complète d'un corps tendre comprimé. Il est clair que dans chaque cas le mode de rapture qui se produira sera celui qui exigera la plus petite force.

D'après ce que nous venons de dire, les données pratiques sont, pour chacane des substances qui sont employées journeliement dans l'industrie, la résistance à la rupture et la charge pratique, cotte dernière étant en général pour les bois 4 de l'effort de rupture, 4 pour le fer et la fonte.

La charge de rupture est nécessairement variable pour divers échantillons d'une même substance; mais la charge pratique, déduite d'une valeur moyenne, est, comme je l'ai dit, parfaitement arrêtée. Cette charge protique est, pour une barre de fer, de 6 kilogrammes par millimètre carré de section. Dans le service du génie, on admet 5 kilogrammes au lieu de 6. Pour les ponts suspendus, les charges par millimètre ont été portées jusqu'à 12 kilogrammes pour les barres et 18 kilogrammes pour les fils, y compris, bien entendu, la surcharge d'épreuve de 200 kilogrammes par mêtre carré de tablier.

Le bois de chêne ou de sapin a une résistance to fois moindre que celle du fer, soit o^{kn}, 6 par millimètre carré. Le ferrésiste assez mal à la compression; aussi évite-t-on en général de lui faire subir une pression directe. Cependant il peut arriver qu'il soit soumis à des efforts mixtes comprenant extension et compression. Si, par exemple (fig. 51), on charge en son milieu une barre de fer s'appuyant sur deux supports, cette barre est soumise à la flexion, c'est-à-dire que les fibres telles que ab sont étendues et celles telles que ed sont comprimées. Dans ce cas où la compression de s'exerce pas directement, on admet qu'elle peut aller aussi jusqu'à 6 kilogrammes par millimètre carré.

La fonte résiste bien à la compression; sa charge pratique peut aller très-bien jusqu'à 8 ou 10 kilogrammes; au contraire, elle résiste très-mal à l'extension. Quand on ne peut pas faire autrement que de l'y soumettre, ainsi que cela a lieu dans les grands cylindres des presses hydrauliques, la charge ne doit pas dépasser a kilogrammes, et encore n'a-t-on pas une sécurité complète, car on a l'exemple d'un cylindre qui s'est brisé sous une charge de 1411,17, le métal étant d'ailleurs parfaitement sain.

On admet que le bois résiste à la compression comme à l'extension. Seulement, lorsqu'il s'agit d'une pièce de grande longueur, c'est-à-dire quand la grande arête dépasse cinq à six fois la plus petite, il peut y avoir flexion : la résistance diminue alors sensiblement.

\$ XIX. — ÉQUILIBRE ET STABILITÉ D'UN COUPS PESANT POSE SUR UN PLAN HORIZONTAL ET SOUMIS A L'ACTION DE FORCES QUI TEN-DENT A LE RENVERSER.

Considérons un corps pesant, un mur, par exemple, soumis à des forces quelconques et reposant sur un plan horizontal.

Les conditions d'équilibre sont au nombre de trois :

La première, c'est que le corps ne puisse pas glisser. En général, cette condition est remplie d'elle-même. Ce ne sera donc que dans certains cas, par exemple lorsque le sol est glissant et pour ainsi dire savonneux, qu'il faudra vérifier si elle est satisfaite.

La seconde, c'est que le corps ne puisse être renversé autour d'une arête.

Il est facile de vérifier que pour que cette condition soit remplie, il faut que la verticale du centre de gravité tombe dans l'intérieur du polygone convexe qui renferme tous les points d'appui. Car si cette verticale tombait par exemple au point P (fig. 52), le poids tendrait à faire tomber le corps autour d'une certaine arête AB; les réactions du point d'appui ne peuvent pas s'opposer à ce mouvement, puisque, au contraire, elles tendraient à faire tourner le corps dans le même sens (*).

Enfin il y a une troisième condition d'équilibre : il ne faut

Vh=Ph

Le produit P? représente le moment maximum qu'on pent supposer à aux force accidentelle saus produire le reuversement. La prenent le moment par rapport à l'arôte pour lequel il « la plus petile valeur, on » es qu'on appelle la moment de stabilité.

^(*) On rousidérait autrofois dans l'équitibre d'un corps ce qu'on appulait le soment de trabilité. C'est le produit du poide de ce corps par la distance de la direction de ce poids au côté du polygone d'appui dont il est le plus rapproche. Suppassons en effet une force l'toulant à rouverser le carps autone d'une avain. Seit l'à son moment; le moment l'i du poids du corps tendra à le maintenie en place; donc l'équillibre strict, let que le plus patite force additionnelle produlinit le renversement, se traduit par l'équation.

131

CHAPITAE V. - APPLICATIONS DE LA STATIQUE.

pas que le mur s'écrase sous la pression qu'il supporte. Si P est la pression totale, Ω la surface pressée, $\frac{P}{O}$ est la pression moyenne par unité de surface.

Il y aurait donc certainement écrasement et désagrégation de la matière, si 7 dépassait la résistance des matériaux à l'écrasement. Mais cette condition est loin d'être suffisante, il faut

encore qu'en aucun point la pression réelle ne soit supérieure à celle qu'on peut faire supporter à ces matériaux d'une

manière permanente.

Il est donc indispensable d'étudier la loi sulvant laquelle les pressions se répurtissent sur la base d'appui; or, nous avons vu que les règles de la statique générale ne peuvent en aucune façon nous renseigner à cet égard, de sorte que nous sommes réduits à faire des hypothèses.

Considérons donc (fig. 53) un parallélipipède droit à base rectangulaire reposant sur un plan horizontal que nous supposerons parfaitement invariable, et soumis à une force verticale P qui s'exerce dans le plan diamétral mn de ce prisme

à une distance a de l'arête B' b'.

Nous admettons que le corps se comprime sous l'action de la force l', de telle sorte que les molécules situées avant la déformation dans un plan B'B" parallèle à la base se trouvent après cette déformation dans un même plan l'b", et qu'il est composé de fibres verticales indépendantes pour ainsi dire les unes des autres, de manière que chacune d'elles se comprime comme si elle était seule.

Considérons une de ces fibres AB. Elle a diminué de Bb; done, si o est la section de cette fibre, p étant la pression moyenne par unité de surface, la pression peut être représentée par

po = lehon

en posant

$$Bb = h$$
.

La résultante des pressions individuelles telles que po doit être égale à P; donc on a

$$P = h \Sigma h \omega$$

Or, ho est proportionnel au volume du tronc de prisme vertical compris entre les plans B'B" et b'b" et dont la base est w: la pression totale P est représentée par le volume du prisme B'h' B" b", et sa direction doit passer par le centre de gravité de ce solide. Donc, si h' et h" désignent les longueurs B' b' et B" b", on nura

 $P = h \Omega \frac{h' + h''}{r},$

d'où

$$k = \frac{P}{\Omega} \frac{2}{h' + h''}$$

en appelant Ω la surface de la base du solide. Les pressions extrêmes sont

p' = hh'p'' = lili''

d'où

$$p' = \frac{\mathbf{P}}{\Omega} \frac{2h'}{h' + h''},$$

$$p'' = \frac{\mathbf{P}}{\Omega} \frac{2h''}{h' + h''}.$$

Il suffit, pour avoir achevé, de trouver le rapport $\frac{h^i}{h^o}$. Pour cela, exprimons que le centro de gravité du solido dont la base est B'B" b" b' est sur la direction de P. Il suffica d'exprimer que le centre de gravité du trapèze B'b'B"b" est à la même distance a du côté B' b' que le paids P, on que l'on a

$$(h^t + h^u) a = h^t \frac{1}{3} + h^u \frac{\alpha}{3} l,$$

d'où l'on tire

$$\frac{h'}{h''} = \frac{2 - \frac{3u}{l'}}{\frac{3u}{l'} - \epsilon}$$

Done

$$\frac{h'}{h' + h''} = 2 - \frac{3n}{l}, \quad \frac{h''}{h' + h''} = \frac{3n}{l} - 1$$

PREMIERE SECTION. - STATIQUE.

done, enfin, les pressions p' et p" sont

$$p' = 2 \left(2 - \frac{3a}{I} \right) \frac{\mathbf{P}}{\Omega},$$

$$p'' = 2 \left(\frac{3a}{I} - i \right) \frac{\mathbf{P}}{\Omega}.$$

En supposent $a < \frac{l}{2}$, la pression p' est plus grande que p''. Si l'on a

$$\frac{a}{l} = \frac{1}{3}$$

on n

$$p''=0$$
 et $p'=\frac{2P}{\Omega}$,

p' est donc double de la pression moyenne. Cette pression peut encore augmenter en supposant que a diminue. Alors la pression p'' devient négative. Il semble naturel d'interpréter ce résultat en supposant qu'il y a une tranche de mor pour laquelle la pression est nulle; c'est la tranche qui est à une distance 3a de l'arête où cette pression est un maximum. A partir de cette tranche, il n'y a plus de pression, de sorte que la pression totale se répartit sur une épaisseur de mur 3a et qu'au delà il n'y a plus pression des surfaces en contact; le joint est ouvert. La pression p' devient alors égale à

Ces considérations trouvent leur application dans la théorie des voîtes (fig. 54). Lorsque la pression entre deux voussoirs

$$\mu' = \mu'' = \frac{\theta}{2 ab},$$

sandis que sa l'on augmentata l'épaisseur totale du mus de montére à avoir

chapitre v. — applications de la statique. 133 se rapproche trop d'une arête B, le joint s'ouvre du côté de l'arête opposée, et il peut y avoir écrosement au point B, bien que la pression moyenne $\frac{\mathbf{P}}{\Omega}$ soit bien inférieure à la limite de la résistance des matériaux.

NOTE SUR LA BALANCE DE ROBERVAL ET SUR LA BALANCE DE QUINTENZ.

On n'u retrouvé, dans le texte préparé par M. Bour, rien qui correspondit aux fig. 33, 34 et 34 bis de la Pt. XXXII. La Note que nous donmus ici est destinée à combler cette lucune.

Balance de Quintenz (fig. 33).

La balance de Quintenz, dont la fig. 33 représente une coupe longituduale, comprend un système de deux leviers: l'un, HF, est mobile dans le plan vertical autour du point fixe O; il porte à son extremité le plateau au lequel on met les poids Q destinés à effectuer la pesée. L'autre levier, ED, est mobile autour d'un point D fixé dans la caisse de l'appareil; il supporte en B un point de la plate-forme AA', et son extrémité libre, E, est suspendue par une tige verticale au point F du premier levier.

Une seconde tige verticale, GK, attachée au point G du levier FH, porte la traverse K, à laquelle la plate-forme AA'est invariablement liée.

La plate-forme AA' repose donc sur les deux points B et K, rattacles aux points F et G du levier supérieur.

Imprimens au point II un déplacement vertical infiniment petit «, le sul qui soit compatible avec les liaisons. Il en résulte pour les points G

l= un > 3 a, on aurait

$$p''=0$$
, mais $p'=\frac{a}{3}\frac{P}{ab}$.

Unal, qualque la base l'Ataugmentée, la pression extrôme p^{j} serait augmentée dan le cappart de $\frac{a}{2}$ à $\frac{1}{a_1}$ au de j à 3.

fine fant d'alliants pas ombier que tous ces résultats sont fambles par une hypothèse plus que contestable, et qu'ils un sont pas directement vérifiables par l'expérience. He na doivent par consequent être admis que pour re qu'ils valent, test-à-dire comme domaint lieu a des règles qu'il est supe de suivre, dans l'imposibilité où l'on se trouve de jamais savoir ce qui se passe effectivament quand sax faces planes en contact sont pressées l'une contre l'autre avec une force decruince.

^(*) Étant donnée la distance u_i si l'un (ait $l=uu_i$ la pression est muiformément réporte sur la haso γub , et l'un u

CHAPITRE V. - APPLICATIONS DE LA STATIQUE.

135

et l' du levier supériour des déplacements verticaux dirigés en sens contraire, et égaux respectivement à

$$\varepsilon \times \frac{\overline{OG}}{\overline{OH}}$$
 et \hat{n} $\varepsilon \times \frac{\overline{OF}}{\overline{OH}}$.

Le premier déplacement est transmis intégralement au point K de la plate-forme par l'intermédiaire de la tige GK. Le second, transmis de même au point B du levier inférieur, communique scalement au point B de la plate-forme un déplacement vertical réduit dans le rapport des distances BD, RD, et égal à

 $t \times \frac{\partial V}{\partial B} \times \frac{\partial D}{\partial D}$

Les déplacements simultanés des points B et K seront donc égaux, et par suits la plate-forme se déplacera parallèlement à elle-même si l'on à

$$t \times \frac{OG}{OH} = r \times \frac{OF}{OH} \times \frac{BO}{RO}$$

on bion si

$$\frac{OG}{OF} = \frac{BD}{ED}$$
.

Supposons que la construction de la balance satisfasse à cette condition. Le corpa P dont on veut déterminer le poids pourra être placé en un point quelconque de la plate-forme AA'. Le poids Q, qui fait équilibre au poids P, produit, pour un déplacement vertical infiniment petit « du point II, un travail virtuel égal à Qc; et le poids P, pour ce même déplacement, produit un travail virtuel de signe contraire, égal au produit de P par le déplacement de la plate-forme, c'est-à-dire égal à

$$P \times a \times \frac{\partial G}{\partial H}$$
.

Le théorème du travail virtuel donne donc pour unique condition d'équilibre l'équation

 $Q * = P i \times \frac{OG}{OH},$

d'où l'on dédoit

$$\frac{P}{O} = \frac{OH}{OG}$$

de surte que, pour la pesée, tout se pusse comme si le poids P était sus-

La poignée L, mobile autour du point N, sert à fixer le levier supérieur et à empécher le jon de l'appareil. On l'abaisse au moment des pesées, pour rendre leur liberté aux pièces mobiles.

Deux petits îndex saillants, taillés en hiseau et reliés l'un au levier HO, l'autre à la partie fixe de la balance, sont plucés en regard l'un de l'autre au point I. L'affleurement de ces index indique que l'équilibre est obtenu.

Bulance de Baberval (fig. 34).

Les deux côtés AB, CD d'un parallélogramme articulé ABCD sont mobiles autour de deux points fixes E et F, situés sur une droite paralléle aux deux autres rôtés AD, BC. La figure est tout entière située dans un plan vertical. La déformation de la figure n'altère pas le parallélisme des côtés AD, BC et de la droite fixe EF; lorsqu'on imprime au système un déplacement quelconque, chacun des côtés latéraux est donc animé d'un mouvement de translation; les vitesses simultanées de chacun d'eux sont paralléles, dirigées en seus contraire et proportionnelles aux distances LE, EB.

Mettons un poids P dans un plateau qui fait corps avec le côté AD, et un poids Q dans un plateau faisant corps avec le côté BC. Il y aura équilibre entre les poids P et Q dans toutes les positions de la figure, pourvu mon ait la relation

 $\frac{P}{Q} = \frac{RB}{AE}$.

En effet, appelons ϵ la projection sur une verticale du déplacement commun à tous les points du côté AD lorsque le parallélegramme reçoit une déformation infiniment petite. Le travail de la pesanteur sur le poids P sera $P \times \epsilon$. Mais la même déformation imprime en sens contraire à tous les points du côté BC un déplacement vertical égal à $\epsilon \times \frac{KB}{AE}$, et le mavail de la pesanteur sur le poids Q est par suite égal à $Q \epsilon \times \frac{EB}{AE}$. Il y a donc équilibre si l'on a

 $P_I = Q_I \times \frac{EB}{AE}$

on bien

$$\frac{P}{Q} = \frac{EB}{AE}$$

L'équilibre est indifférent, car il a fieu dans toutes les positions possibles du système. Les poids P et Q pervent d'ailleurs être appliqués soit en des points des côtés AD et BC, soit en des points P et Q', rellés invariablement à ces côtés et entraînés par leur mouvement de translation. Le changement de place des poids P et Q ne trouble pas l'équilibre, et u'a d'influence que sur les efforts intérieurs développés dans les côtés du parallélogramme et sur les charges des points lixes E et F.

La halance de Roberval est ordinairement disposée de manière que la droite EF soit verticale, et qu'elle divise en deux parties égales les côtés AB, CD. L'équilibre exige alors que les poids P et Q soient égaux.

La fig. 34 bis représente les articulations de l'appareil aux sommets du parallélogramme et aux centres de rotation E et F. Les dispositions adoptées ont pour objet de réduire le plus possible le travail du frottement développé au contact des pièces mobiles, qui doivent se toucher mutuellement par des arêtes vives.

DEUXIÈME SECTION.

DES MACHINES A L'ÉTAT DE MOUVEMENT UNIFORME.

CHAPITRE PREMIER.

NOTIONS GÉNÉRALES SUR LE TRAVAIL DES FORCES DANS LES MACHINES.

§ I. - IMPORTANCE DE LA NOTION DE TRAVAIL.

Nous avons défini le travail élémentaire d'une force F dont le point d'application parcourt un espace ds. par l'équation

T.F = F ds cos F, ds.

et nous nous sommes servi de la considération du travail victuel pour énoncer le théorème dont nous avons fait la base de la Statique.

Le travail proprement dit, correspondant à un déplacement réel, joue un grand rôle dans la Mécanique industrielle. Nous allons commencer la théorie des machines par l'étude de cette quantité, afin de justifier la dénomination de travail, empremée au langage des économistes, et qui, jusqu'ici, u'a eu pour nous d'autre avantage que d'exprimer d'une manière abrègée le produit d'une force par une longueur, ces deux quantités etant considérées comme indépendantes.

Quand on étudic les divers effets mécaniques que les forces en général sont appelées à produire dans les machines, on est tout de suite amené à ranger dans deux classes tout à fait distinctes les services qu'une force quelconque peut rendre à l'industrie. Tantôt on emploie des forces, des poids par exemple, à s'équilibrer mutuellement, c'est l'état statique : alors la force se présente à nous comme une chose qui subsiste, et dont on use indéfiniment sans la consommer. L'équilibre une fois établi persiste, tant qu'une cause étrangère ne vient pas l'altérer. Dans la Section précédente, nous avons donné de la manière la plus générale les lois de l'équilibre des forces appliquées à une machine quelconque, et nous n'avons pas à revenir là-dessus.

Mais tel n'est pas le cas habituel de l'emploi des forces dans l'industrie; on les applique à des machines en mouvement, et l'on vout produire un certain effet; par exemple, élever des fardeaux, comprimer ou broyer des corps, tourner, couper, percer le bois ou les métaux.

Quelles sont les lois de l'action des forces appliquées à une machine en mouvement, à une machine qui travaille, dans l'acception vulgaire du mot? Quelles sont les forces à développer pour produire un effet donné, et pour le produire d'une manière industrielle, c'est-à-dire avec la plus grande perfection et la plus faible dépense possible? Telles sont les questions en présence desquelles nous nous trouvons actuellement, après avoir complétement et simplement élucidé toutes celles qui se rapportent à l'état statique des machines.

Et d'abord, qu'est-ce qu'une machine? Voici la définition qu'on en donne ordinairement:

Une machine est un système de corps, les uns fixes, les autres mobiles. Ces derniers recoivent en certains points l'action de forces données, et exercent en d'autres points, sur les corps soumis à l'action de la machine, des forces qui différent généralement des premières par leurs intensités, par leurs directions, et par les vitesses de leurs points d'application.

Nous ajouterons seulement à cette définition que, dans le cas d'une machine en mouvement, il y a nécessairement, nous seulement effort exercé par le moteur, comme lorsque cet agent avait simplement pour mission de faire équilibre à une résistance quelconque; mais il y a de plus déplacement du point auquel est appliqué l'effort moteur: il y a donc travail de cet effort, dans le sens géométrique du mot.

Considérons également le point où la résistance est appliquée; nous reconnaîtrons de la même manière que, nonseulement cette résistance est contre-balancée par l'effet des puissances, mais encore qu'elle est vaincue, c'est-à-dire que son point d'application marche en sens contraîre du mouvement que cette force tendrait à lui imprimer, si elle agissait seule.

Il y a donc à la fois, comme condition tout à fait nécessaire de la marche de la machine, travail de la puissance et travail de la résistance. Le mot travail est ici toujours pris dans son acception géométrique; mais on commence déjà à se rendre compte de la justesse de cette dénomination étrangère au langage de la science pure : un effet, on vient de le voir, sans travail géométrique, point de travail industriel.

Il suit de là qu'un moteur est un corps qui doit avoir la propriété, non-seulement de développer une force sur un autre corps, mais encore de faire décrire en même temps un certain chemin au point d'application de cette force, dans le sens de son action. Cette double condition est indispensable. Or, une remarque qu'on n'a pas tardé à faire, c'est que, dans toutes les machines linaginables, du moment que la machine fonctionne et produit un certain résultat industriel, le moteur, quel qu'il soit, se trouve toujours au bout d'un certain temps, pour une raison ou pour une autre, dans l'impossibilité de continuer à exercer utilement son action.

L'homme et les animaux, qui sont certainement les plus anciens moteurs utilisés, ne tardent pas à réclamer du repos et de la nourriture; l'eau qui fait tourner la roue d'un moulin s'écoule suivant sa pente naturelle; la vapeur de nos machines à feu se condense après avoir rempli son office; et il faut dans tous les cas, à certaines époques plus ou moins rapprochées, remplacer le moteur épuisé par un autre, à moins qu'on n'ait le moyen de replacer celui dont on a fait usage dans des conditions telles, qu'il puisse fournir une nouvelle campagne.

Depuis qu'on est parvenu à substituer à peu près universellement des agents inanimés à l'homme et aux animaux, dont les besoins de réparation sont trop manifestes, le rêve d'un grand nombre d'inventeurs à été, et sera toujours, de trouver un agent naturel qui, appliqué à une machine appro140 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT.
priée, entretienne indéfiniment le mouvement de cette machine
en surmontant une résistance continue.

Malheureusement, la chimère séduisant e du mouvement perpétuel cache une absurdité mathématique, et nous démontrerons très-prochainement que, quelle que soit la disposition imaginée, la puissance motrice d'une machine est quelque chose qui se consomme, qui se dépense en raison même de l'usage qu'on en fait. Le problème de la mécanique industrielle est de rechercher quelles sont les dispositions à employer pour effectuer une opération définie en réduisant la dépense au minimum.

Ce dernier point est une condition indispensable de l'existence de la grande industrie.

C'est donc ce fait capital de la dépense qui distingue d'une manière absolue l'état dynamique d'une machine de son état statique.

Sur quel élément porte d'ailleurs la dépense? Qu'est-ce qui disparatt dans une machine en marche? Comment le moteur finit-il par se trouver incapable de continuer son service? D'après ce que nous avons dit, cela peut arriver de deux manières, soit parce que cet agent ne pourra plus exercer d'effort sur la machine, soit parce que le point d'application de l'effort exerce ne pourra plus se déplacer dans la direction de cet effort. Dans tous les cas le moteur ne pourra plus déve-lopper de travail.

Étudions quelques cas très-simples.

Par exemple, on monto le ressort d'une pendule, et le ressort ainsi monté est capable d'imprimer en se débandant le mouvement à la pendule, mais à la condition de voir sa tension diminuer à mesure qu'il produit son effet : quand le ressort est revenu à son état primitif, il faut le remonter pour que le mouvement continue (*).

Le ressort qui fait marcher le mouvement d'horlogerie est

souvent remplacé par un poids, et le poids en descendant d'une hauteur déterminée remplit exactement le même office que le ressort en se débandant; il faut aussi le remonter lorsqu'il est arrivé au has de sa course, si l'on veut qu'il continue de rendre le même service; le poids n'a rien perdu, différant en cela du ressort; mais il se trouve comme celui-ci dans des conditions telles, qu'il ne peut plus continuer à faire marcher la machine.

On pourrait même imaginer, sinon réaliser, des dispositions telles, que l'intensité de la force motrice, non-seulement ne diminuât pas par suite de son action sur la machine, mais qu'elle augmentat au contraire dans une proportion quelconque. Considérons par exemple une molécule, un petit corps attiré par une masse fixe; en cédant à cette force, le corps peut exercer un certain effort sur un piston. Au bout d'un certain temps, la force avec laquelle notre corps presse le piston n'a pas diminué; loin de là, elle a grandi dans le rapport inverse du carré de la distance qui sépare les deux masses agissantes; elle augmentera ainsi jusqu'à devenir théoriquement infinie, précisément au moment où la masse mobile sera venue se précipiter sur le corps attirant, et où la continuation du mouvement sera devenue impossible.

Dans les trois exemples qui précèdent, nous voyons également un certain effet produit, avec cette différence que dans un cas la force motrice à disparu, que dans l'autre elle est restée constante, que dans un troisième enfin elle à grandi. Mais dans tous les cas, pour une raison ou pour une autre, à partir d'un certain instant, la continuation du mouvement est devenue physiquement impossible.

C'est donc une chose non-sculement inexacte, mais de plus, absolument vide de sens, que de dire, commé on le fait quelquefois, qu'une machine qui travaille consomme de la force.

Une force, c'est un nombre de kilogrammes; or une hortoge ne consomme pas le poids qui lui a donné le mouvement, et si nous trouvous dans cartains cas, comme dans l'exemple du ressort, disparition de la force après qu'elle a produit son effet, dans d'autres cas, au contraire, la force crott en s'utilisant, elle finit même par devenir infinie, comme dans notre troisième exemple, au moment précis où elle ne peut plus développer

^(*) As contente, les resserts d'un fautenii peuvent servie indéfiniment à l'usupe auquel on les destine, du moins tant que leur structure physique n'est point altèrée, comma elle l'ost nécessidrement à la longue, aussi bien que celle du ressort du pendule, par des causes dont nous n'avons pas on ce moment à nous occuper.

d'effet utile, parce que la continuation du mouvement de son

point d'application est devenue impossible.

Il suffit d'ailleurs de se rappeler la théorie de l'équilibre pour reconnaître combien la force proprement dite semble jouer un rôle peu important dans les machines. Celles-ci ont précisément été inventées pour multiplier la force pour ainsi dire à l'infini, et la plus petite force peut faire équilibre à une force quelconque, par l'intermédiaire d'une machine convenable; seulement, quelle que soit la disposition employée, on sait que si l'équilibre venait à être rompa accidentellement dans un sens ou dans l'autre, le travail de la puissance dovrait toujours être rigoureusement égal au travail de la résistance.

Tel est le théorème du travail virtuel, base de toute la

science de l'équilibre des machines.

Or, c'est cette même quantité géométrique, que nous appelons le travail d'une force, fonction composée de l'intensité de la force et d'un mouvement toujours plus ou moins indépendant de cette force, c'est cette quantité, dis-je, qui joue également le rôle le plus important dans la théorie des machines en mouvement.

Nous avons vu que lorsqu'une machine travaille, il y a à la fois résistance vaincue et déplacement du point d'application

de la résistance en sens contraire de son action.

Nous avons vu aussi que, pour qu'une machine soit capable de vaincre une résistance, c'est-à-dire de faire marcher le point d'application de cette résistance en sens inverse de sa direction, il faut qu'une force mouvante ou une puissance lui soit appliquée; il faut en outre que le point de la machine sur lequel agit la puissance marche dans le sens de cette action ; il faut donc que la puissance développe un certain travail positif. Ce travail, développé par la pulssance, fait que la machine soumise à son action peut effectuer le travail correspondant à la résistance qu'elle a à vaincre; et, ce qu'il importe de remarquer, ce travail correspond à quelque chose que le moteur a perdu, à quelque chose qui a disparu, consommé sans retour par la machine. Que la puissance, par suite de son action sur la machine, sit augmenté, diminué, ou qu'elle soit restée constante, c'est là un fait tout à fait secondaire ; l'essentiel, c'est qu'il y a cu du travail dépensé. Un poids P situé à la hauteur H auCRAPITRE I. - TRAVAIL DES PORCES DANS LES MACHINES. I

dessus du soi peut développer un travail PII, mais une fois à terre il ne pourra se retrouver en état de produire à nouveau du travail qu'en subissant à son tour l'effet d'une machine élévatoire quelconque. C'est un négociant qui a acheté des marchandises et dépensé de l'argent, il ne peut rentrer dans ses fonds qu'en vendant les marchandises qu'il a achetées, ou

d'autres qu'il avait en magasin (*).

Mais après avoir porté sinsi au passif de la machine la dépense du travail qu'elle nécessite de la part du moteur, il est juste de porter à son actif le travail des résistances qu'elle a vaincues. En effet, il y a de ce côté effet utile produit; il y a gain, comme il y a dépense aux points où sont appliquées les pulssances. Des barres de métal ont été étirées, forgées, limées. Du grain a été réduit en farine, on a lancé du vent dans un fourneau pour produire certaines réactions chimiques, on a élevé des matériaux pesants, etc; et toutes ces opérations se sont accomplies malgré les forces qui s'opposaient aux mouvements que l'outil était obligé de prendre, par suite de sa liaison géométrique avec le récepteur. Le travail de ces forces résistantes a été vaincu, et on a fait une certaine quantité d'ouvrage qui représente le bénéfice en vue duquel la machine a été construite.

Pour bien mettre en relief l'importance du rôle que jour dans une machine quelconque, aussi bien le travail moteur dépensé que le travail recueilli, nous dirons, au lieu de considérer une machine comme un intermédiaire chargé de transmettre l'effort du moteur au point où est appliquée la résistance, que la machine a pour effet de transmettre le travail du moteur au point où l'on a besoin de produire un travail résistant.

Unité de travail.

Quand on considère le travail au point de vue économique, comme ce qui se paye dans l'industrie, on est naturellement

^(*) Sealement, le négociant realise d'habitude du bénéfice sur ses opérations, iaudis qu'en Mécanique c'est le commire, Si nous considérans une montre et le terrait qu'en déponse à la comenter tous les jours, es travail out plus grand que celui que le ressert restitue.

Partent de là, on a dà chercher une unité, un étalon commode auquel on put comparer les quantités d'action développées par divers moteurs, ainsi qu'une mesure du service auquel correspond un effort vaincu quelconque.

On a pris pour terme de comparaison le cas où la force, soit mouvante, soit résistante, est celle qui nous est le mieux connue, celle dont les lois sont les plus simples : la pesanteur.

Rien de plus facile en effet que d'évaluer numériquement le travail développé par un corps qu'i tombe. En effet, faire tomber un poids de l'élogramme d'une hauteur H, ou deux poids de 500 grammes de la même hauteur H, c'est identiquement la même chose, et c'est deux fois ce qui correspond à la chute d'un scul poids de 500 grammes. Semblablement, qu'un poids P tombe d'une hauteur de 2 mètres, c'est deux fois plus d'action dépensée que s'il n'était descendu que de 1 mètre; donc le travail développé par un poids P tombant d'une hauteur H est proportionnelle au produit PH, et ce travail sera représenté numériquement par la quantité

PH

si l'on convient de prendre pour unité de travail industriel celui qui correspond au cas où le poids P est égal à 1 kilogramme, et la hauteur H à 1 mètre. CHAPTERS I. - TRAVAIL DES PORCES DANS LES MACHINES.

Ceci étant une fois admis pour les travaux développés par la chute d'un poids, on peut mesurer à l'aide de cette unité le travail d'un moteur quelconque, par exemple, celui d'un cheval qui a fait parcourir à une voiture un espace de 5 mêtres sur une route donnée, en remplaçant le cheval par un poids, laissant la même chose s'effectuer, et mesurant le travail développé.

La même unité peut encore servir à comparer les travaux qui correspondent à l'exécution de deux ouvrages de nature différente, car, dans l'élévation du poids, on trouvera comme précédemment que le service rendu est proportionnel à PH, ou qu'il est égal à PH, si l'on adopte l'unité que nous venons de définir.

Cette unité de travail industriel porte le nom de kilogrammètre (*). Estimer une quantité de travail en kilogrammètres. c'est prendre pour mesure du travail industriel l'énergie de la force motrice, ou celle de la résistance vaincue, en employant pour un instant le vieux mot de Jean Bernoulli. Cette dénomination, assez mal choisie d'ailleurs, a disparu du langage scientifique, ou plutôt n'y a jamais été admise, et un dit aujourd'hui le travail d'une force, pour désigner la quantité purement géométrique qu'on obtient en faisant le produit de l'intensité de la force par la projection, sur sa direction, de l'espace parcouru par son point d'application. Il est clair qu'à ce point de vue il n'y a pas d'unité de travail, pas plus qu'il n'y a d'unité de masse ou d'unité de vitesse. Le produit de deux facteurs est égal à 1, quand chaque facteur est séparément égal à son unité; c'est là une chose dans laquelle il n'y a rien d'arbitraire, tandis que l'adoption d'une unité implique nécessairgment la liberté du choix.

^(*) Quand nous avous dafini la force, nous avons dit que les forces les plus différentes, quant aux expactères physiques, doivent, considérées comma causes de monvement, être traitées comma des quantités de même espèce et comparées à une sulté commune, parce qu'on pout les remplacer les unes par les autres dans l'équilibre ou le mouvement d'un point materiel.

None retrouvous ici la même denivalence au point de vac du travail. Une machine pout être plus au moins bien appropriée à l'action d'un mutour plutei que d'un autre; mals, en définitive, une machine à vapeur fara tourner un moulin, mouvair massie, étc., aussi hien qu'une roue hydraulique ou un moulin à vent.

^(*) On définit asses souvent le kilogrammètre un disant que c'est le travail nécessaire pour élever : kilogramme à « mêtre de hanteur. En réalité, un moteur quelconque, pour produire ce réalitat, développera, dépensera una quantité de travail qui variore solon la manière dont il s'y prendra. Cette quantité, comme nous le verrons, ne sauvait descendre na-dessous de l'Allogrammètre, et, dans tous les cas, le service rendu, ce qu'en doit payer à l'homme qui élève des poids, ou au propriétaire de la machina chargée de cet office, est proportionnel au produit PH. Tont mieux pour l'auveier qui exécute cette opération dans des conditions plus avantageuses pour lai que son voisin.

Des sources de travail.

Le temps n'intervient pas dans la définition que nous avons donnée du travail. Faire un ouvrage donné en huit jours ou en quinze jours, ce n'est assurément pas la même chose, mais on comprend qu'on puisse mettre à part la question du temps, et mesurer la quantité d'ouvrage effectué. Le mot de travail s'applique donc à une quantité indépendante de l'idée du temps.

Au contraire, le temps intervient nécessairement dans l'appréciation d'une source de travail. De même que nous estimons la valeur d'une source d'eau au point de vue de l'utilité publique par le nombre de mètres cubes que la source peut nous fournir en une seconde, de même nous estimerons la valeur d'une machine à vapeur ou d'un moteur quelconque agissant d'une manière continue, par le nombre de kilogrammètres que ce moteur peut mettre à notre disposition dans une seconde.

L'usage établi est de diviser par 75 ce nombre de kilogrammètres, et de dire que le quotient représente la force de la machine en chevaux. Cette expression est doublement vicieuse; d'abord parce qu'elle emploie le mot force dans une acception qui n'est pas la vraie, ensuite parce qu'un cheval n'est pas réellement capable de développer d'une manière continue 75 kilogrammètres par seconde. Quoi qu'il en soit, l'unité de source de travail est un agent capable de développer cette quantité d'action; on lui donne le nom de chevalvapeur.

§ II. - PRINCIPE DU TRAVAIL.

Après avoir essayé de faire comprendre l'importance, dans la théorie des machines, de la quantité géométrique à laquelle nous donnons le nom de travail, nous allous préciser algébriquement les considérations qui précèdent, et établir la relation qui existe, dans toute machine en mouvement, entre le travail des puissances appliquées à la machine, et le travail des résistances vaincues.

Considérons d'abord le cas d'un point matériel en mouve-

ment sous l'action d'une force F; on a pour l'accélération totale

$$J = \frac{\mathbf{F}}{m}$$

L'accélération tangentielle $\frac{dv}{dt}$ est la projection de I sur la tangente; donc

$$\frac{dv}{dt} = \frac{\mathbf{F}}{m} \cos \overline{\mathbf{F}, ds},$$

d'où

$$m dv = \mathbf{F} dt \cos \mathbf{F}_i ds$$
.

Or, on a

$$v = \frac{dx}{dt}$$
.

Multiplions ces équations membre à membre, nous aurons

(1)
$$mv dv = F ds \cos F ds = T_s F$$
.

Ainsi, le travail élémentaire de la force F, appliquée à un point matériel en mouvement, est égal à la différentielle de $\frac{1}{2}mv^2$.

Cela posé, il est évident que la projection F cosF, ds a une valeur déterminée en chaque point M de la trajectoire du point mobile, position définie, comme nous l'avons vu en Cinématique, par la grandeur et le signe de l'arc s qui sépare le point M de l'origine des espaces; donc F cosF, ds est une fonction de s, connue ou non; on peut donc concevoir qu'on calcule l'intégrale

entre deux positions du mobile M_a et M séparées par un intervalle de temps quelconque ℓ . C'est cette intégrale qu'on appelle le travail total de la force F pendant le temps ℓ , ou pour le parcours $s - s_s$. On peut ainsi mettre l'intégrale de l'équation (1) sous la forme

(2)
$$TF = \frac{i}{2} m(v^2 - v_1^2).$$

148 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT. Or, le produit me² à reçu le nom de force vive. Donc:

Tutonime. — Pendant un temps quelconque, le travail de la résultante des forces qui agissent sur un point matériel (ou la somme des travaux de toutes les forces directement appliquées à ce point) est égul au demi-accroissement de la force vive de ce point matériel.

En considérant le point dont la masse est m comme faisant partie d'un système matériel quelconque, il y a lieu, comme on sait, de distinguer, parmi les forces appliquées à ce point, les forces F, qui sont extérieures au système, et les forces que nous appelons intérieures. Alors, en faisant la somme des équations telles que (2), nous aurons l'expression analytique générale du théorème du travail pour un système matériel quelconque,

(3)
$$\sum_{i=1}^{n} mv^{i} - \sum_{i=1}^{n} mv^{i}_{i} = \sum_{i=1}^{n} TF + \sum_{i=1}^{n} Tf.$$

On appelle force vive totale du système la somme des forces vives des divers éléments de ce système, et l'on énonce l'équation (3) de la manière suivante :

Tutoneme General. — Dans tout système matériel en mouvement, le demi-accroissement de la force vive totale est égal à la somme des travaux des forces, tant intérieures qu'extérieures, appliquées aux différents points de ce système.

Ce qui fait le grand intérêt de ce théorème, c'est qu'il peut être démontré, comme nous l'avons fait, avant d'avoir abordé la Dynamique. L'équation que l'on trouve ainsi, presque saus calcul, et qui établit une certaine relation entre les forces appliquées à un système quelconque et les vitesses des différents points en mouvement, cette équation, dis-je, est suffisante pour établir la théorie des machines.

Nous allons, en effet, montrer que, quelle que soit la constitution intime d'une machine, quel que soit le moteur qui lui soit appliqué, et l'ouvrage qu'elle est appelée à exécuter, il existe des règles générales, qui sont vraies pour toutes les machines imaginables, et dont la connaissance est absolument indispensable aux mécaniciens de tous les ordres. Ces règles chapitre i. — Travail des vonces dans les machines. 149 se déduisent toutes de notre équation (3). Nous n'épuiserons pas d'ailleurs, en ce moment, toutes les conséquences renfermées dans cette équation, et nous exposerons seulement ici les points les plus importants de la théorie des machines, en réservant pour la partie du cours consecrée à la Dynamique proprement dite l'étude des phénomènes les plus délicats.

Quand nous avons étudié les machines en Cinématique, en nous bornant au point de vue purement géométrique, nous avons reconnu des l'abord une immense variété de mécanismes, différant les uns des autres par la nature des éléments employés (solides, liquides, gaz, cordes ou courroies, etc.), par la disposition des organes, enfin et surtout par la nature de l'effet final, c'est-à-dire du mouvement géométrique produit.

Il est résulté de là un certain embarras pour la classification et l'énumération de tous ces engins. Quant à leur théorie géamétrique, nous avons dû nous borner à donner quelques théorèmes plus ou moins généraux, et chaque question particulière doit être traitée d'une manière distincte par le moyen des procédés et des ressources de la Géométrie ordinaire et de la Géométrie analytique.

Au contraire, dès que nous nous proposons de rechercher comment ces organes si différents reçoivent et transmettent l'action des divers moteurs que la nature met si libéralement à notre disposition, tout s'éclaircit, se simplifie, s'unifie. La théorie de toutes les machines se réduit au théorème unique que nous venons de démontrer.

§ III. — THÉOME DE LA TRANSMISSION DE TRAVAIL DANS LES MACHINES.

Reprenons noire équation (3), et, parmi les travaux de toutes les forces dont la somme algébrique figure au deuxième membre, désignons par T_m le travail moteur reçu par la machine pendant la période que l'on considère, c'est-à-dire la somme de tous les travaux élémentaires positifs, et par T, le travail résistant, c'est-à-dire la somme, prise positivement, de

150 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT. LOUS les travaux élémentaires négatifs. Nous écrirons alors

(4)
$$\sum_{i=1}^{1} mv^{i} - \sum_{i=1}^{1} mv^{i} = T_{v} - T_{v}$$

La machine étant supposée à liaisons complètes, ce qui est le cas le plus général, les rapports des vitesses de tous les points sont déterminés par des lois purement géométriques, que nous avons établies dans la Cinématique. Par suite, les vitesses des différents points s'expriment en fonction des coordonnées qui fixent la forme et la position du système, et de la vitesse d'un seul point choisi à volonté. L'équation (4) donne cette dernière vitesse à un instant quelconque, si l'on connaît pour cet instant la somme des travaux de toutes les forces, à partir d'un instant initial arbitraire.

Pour étudier au moyen de cette équation les circonstances principales de la marche d'une machine; nous distinguerons les trois périodes suivantes.

Parmière remiore. - Mise en train de la machine.

Considérons le moment où, la machine étant en repos, on commence à lui appliquer l'action de son moteur.

La machine se met en marche, surmonte les résistances qui lui sont appliquées, accomplit un certain travail, et en même temps, comme condition nécessaire de son fonctionnement, elle fait prendre à ses pièces des vitesses qui généralement doivent être maintenues dans de certaines limites pour que la besogne soit bien faite.

Pour cette première période, l'équation doit s'écrire

$$\sum_{n=1}^{\infty} me^{n} = T_{n} - T_{n}$$

puisque les vitesses initiales des diverses parties de la machine, représentées d'une manière générale par v_0 , sont toutes nulles.

De là nous tirons

$$T_s = T_m - \sum_{i=1}^{n} m w^i.$$

CHAPITRE 1. — TRAVAIL DES FORCES DANS LES MACHINES. 151

Donc, dans cette première période, le travail résistant vaincu
par la machine est plus petit que le travail moteur, et il lui
est inférieur d'une quantité

$$\frac{1}{2}\sum mv^{2}$$

égale à la demi-somme des forces vives acquises par les diffirentes pièces de la machine.

Si donc le travail résistant qu'il s'agit de vaincre est constant dans l'unité de temps, il faudra, dans cette première période, développer un travail moteur plus considérable que ce travail résistant.

S'il s'agit d'un moteur animé, il faudra donner un coup de collier; s'il s'agit d'une machine hydraulique ou à vapeur, le mécanicien qui la conduit devra donner plus d'eau à la première, plus de vapeur à la seconde, et cela jusqu'au moment où, la machine ayant atteint sa vitesse normale, le travail va devenir régulier.

DEUXIÈNE PERIODE, - Travail normal.

Au point de vue du travail normal, un doit distinguer trois classes principales de machines.

réglé, est uniforme. Tels sont les moulins à blé, les métiers mus par une roue hydraulique, et un grand nombre d'autres machines, caractérisées en général par cette circonstance, que toutes les pièces, sauf peut-être quelques organes accessoires, possèdent un mouvement de rotation continu et uniforme.

Une fois ces machines arrivées à leur vitesse de régime, leur force vive ne varie plus d'une mantère sensible, et l'on a pour un intervalle de temps quelconque

$$T_o - T_c = 0$$
.

2º Dans les machines de la deuxième classe, le mouvement des diverses pièces, pendant la marche régulière, s'accélère et se ralentit alternativement, mais de telle manière que la vitesse de chacun des points de la machine reste toujours comprise entre certaines limites, et que la vitesse de tout le système se retrouve identiquement la même, à des intervalles réglés. C'est ce qu'on observe par exemple dans les pompes, les machines à vapeur, les soufficries, etc.

Considérons des époques correspondantes de ces intervalles successifs, de ces périodes de temps, tours ou révolutions qui se succèdent, et qui sont telles, qu'au commencement et à la fin de chacune d'elles les vitesses des diverses parties sont les mêmes: il est clair que si l'on applique l'équation du travail, qui a ficu pour un intervalle quelconque, depuis le commencement jusqu'à la fin de cette période, le premier membre de l'équation générale est égal à zéro, et par conséquent le second l'est aussi; donc le travail moteur T_m développé pendant une période, ou pendant un nombre quelconque de périodes, est égal au travail résistant vaincu T_r.

Ainsi, quoique T. et T. ne soient pas égaux pour chaque élément de temps, l'égalité de ces quantités peut être regardée comme existant en moyenne, pendant toute la durée de la marche régulière de la machine. On peut donc écrire, pendant toute la durée du travail normal de la machine, l'équation

$$T_r = T_m$$

3º Cette relation serait encore très-approximative quand même le mouvement de la machine ne présenterait pas une périodicité régulière, comme dans les locomotives, par exemple, et dans beaucoup d'autres machines. En effet, si nous considérons deux instants séparés par un intervalle suffisamment grand, il est bien évident que la force vive ne saurait croître au delà d'une certaine limite, et que par conséquent la quantité

$$\sum_{\frac{1}{2}}^{\frac{1}{2}} mv^2 - \sum_{\frac{1}{2}}^{\frac{1}{2}} mv_v^2$$

si elle n'est pas nulle, ne peut dépasser une certaine limite positive ou négative, plus ou moins élevée, selon les cas, mais toujours bien déterminée.

Au contraire, la machine ne cesse pas de vaincre des résistances, et par conséquent de consommer du travail moteur; donc, les deux termes T_m et T_r croissent tous les deux et pouchapitre i. — Travail des fonces dans les macuines. 153 vent déposser une grandeur quelconque assignée à l'avance, pourvu que l'on considère un temps suffisamment long.

Or, l'équation du travail nous apprend que la différence entre ces deux termes conserve une valeur toujours assez petite; on a donc, avec une faible erreur relative.

$$T_{\sigma} = T_{\sigma}$$

Donc, en général, on peut dire que, pendant la marche normale d'une machine quelconque, il y a égalité entre le travail moteur développé et le travail résistant vaineu. Ce résultat est indépendant de la vitesse de la machine.

TROISIÈME PÉRIODE. - Arrêt de la machine.

Supposons enfin que nous cessions de fournir du travail moteur à la muchine. Les résistances continuant à agir, le mouvement se ralentira peu à peu, pour cesser au bout d'un certain temps. Nous avons pour la période d'arrêt de la machine l'équation

$$-T_r = -\sum_{i=1}^{n} m e^{i},$$

les vitesses finales étant toutes nulles, et les vitesses initiales étant précisément celles de la fin de la première période, lesquelles se sont conservées sans altération pendant toute la durée de la seconde, comme il a été expliqué. On déduit de là

$$T_r = \sum_{i=1}^{n} m x^i.$$

Le travail résistant qu'on produit ainsi sans dépenser de travail moteur est précisément égal au travail moteur dépense, en trop dans la période de mise en train.

Théorème de la transmission du travail.

Faisons la somme des trois équations obtenues séparément, nous aurons en définitive

$$\sum T_n = \sum T_r$$

De telle sorte que, quelles que soient les variations du mouvement de la machine, le travail développé par les forces mouvantes qui lui sont appliquées pendant tout le temps qu'elle est en marche est toujours égal au travail développé dans le même temps par les forces résistantes.

Ce théorème remarquable est connu sous le nom de théorème de la transmission du travail.

Il consiste essentiellement en ce que, quelles que soient la multiplicité et la disposition des organes d'une machine (toutes choses qui permettent de modifier d'une manière véritablement merveilleuse la direction, la grandeur et le mode d'action d'une force quelconque, en même temps que les vitesses des différents points soumis à cette action), il y a pourtant une chose sur laquelle nous n'avons aucune influence, c'est la quantité de travail à développer; cette quantité doit toujours être rigoureusement égale au travail des résistances à vaincre (*).

(*) C'est ce que le P. Mersume fait paraîtement sentir dans le petit ouvrage deji elle à l'occasion de la théorie des machines en équilibre :

Forme définitive de l'équation du travail.

Le théorème fondamental de l'égalité entre le travail moteur et le travail résistant n'est vrai que si l'on a soin de tenir compte, dans l'évaluation de ce dernier élément, des résistances de toute nature qui tendent à s'opposer au mouvement de la machine. Or, au point de vue économique, industriel, il y a lieu de diviser ces résistances en deux catégories bien distinctes, comprenant:

D'une part, les résistances utiles, c'est-à-dire celles qui correspondent à l'ouvrage même que la machine est destinée à exécuter.

D'autre part, les résistances qui se développent dans la machine par suite de son mouvement (comme les frottements entre les pièces solldes dont la machine est formée), résistances qui n'ont rien de commun avec le travail en vue duquel la machine est employée; elles sont désignées sous le nom de résistances passives (*).

Soit T le travail des résistances utiles, T_p celui des résistances passives, on a

 $T_r = T + T_p$

d'un comp saus les diviser, parce que l'on a souvent brancoup de temps et pen de force; c'est pourquey la longueur du temps recompense le pen de force. Mais celuy-la se tramperait qui vondrait abreges le temps en n'usant que d'une pelle force, et monstreroit qu'il n'entend pas la nature des machines, ny la caison de leurs effets, etc.

. Or, il fast conclure do tant en discours que l'un ne pent rien gaigner en furce qu'un ne le perde en temps, etc. »

(Les Mechaniques de Galifée, chap. (Pr. De l'utilité des machines.)

Il est impossible de mierx faire researtir l'importance capitale de ce grand principa, qua l'observation attentive retrouve dans toutes les machanes, et qui consiltur tout ce qu'il faut ajonter sux considerations de Géométrie pour pour avoir la théorie complète d'une machine quelconque.

(*) Ces résistances sont doublement misibles, d'abord parce qu'elles consomment instillement de trevail motone, ensuite parce que re travail absorbé devant toujours se retrouver balance dans le budget d'une machine par une quantité équivalente de résistances vainones, et se trouvant complétement perdu pour l'effet utile, est employé uniquement à user les diverses pièces, à échauffer les organes en à développer des vibrations qui se transmottent aux supports et misent à la régularité du travail de l'outil.

[«] Ayant que d'entreprendre la spéculation des instruments de la Méchanique, il faut remarquer en général les commodités et les profits que l'en peut eu tirer, ain que les arthans ne croient pas qu'ils puissent servir aux opérations dant ils ne sont pas espaldes, et que l'en paisse levar de grands fardeaux aver pou de force; car la nature ne pout être lempée ni céder à ses droits, et nulle réalstance ne peut être sommentée que par une plus grande force. » Nonsdirions aujourd'hai, pour être plus corrects : que par une force déretoppant me travail plus grand.

[&]quot; Il faut done lei considérer quatro choses, à savoir : le fardesa que l'on vent transporter d'un lien à un autre, la force qui doit le mouvoir, la distance par laquelle se fait le mouvement, et le tomps dudit mouvement, parce qu'il sort pour en déterminer la vitesse; de sorte que il l'on suppose telle résistance, telle force et telle distance déterminée que l'on voudre, il n'y a tuit donte que la force requise conduira le fardesa à la distance donnée, quey que l'adite force soit très-petite, pourvu que l'on divise le fardesa en tant de parties que le force puisse en mouvoir une, car elle les transporters toutes leunes après les autres; d'où il s'ensuit que la moindre du mende peut transporter tel poids que l'on voudre.

[»] Mais l'on ne peut dire à la fin du transport que l'on ayt remud au grand fardeau avec peu de force, puisqu'elle a toujours esté égale à chaque partie du furdeau : de manière que l'on ne gaigne rien avec les instruments, d'autant que si l'on applique une patite force à un grand furdeau, il faut beaucoup de temps, et que si l'on veut le transporter en peu de temps, il faut une grande force.....

[«] Neummoins les machines sent utiles pour mouvoir de grands fardaaux luul

156 DEUXIÈME SECTION. — DES MACRIMES EN MOUVEMENT. et l'on écrit ordinairement l'équation du travail sous la forme

$$\sum \frac{1}{2} m v^2 - \sum \frac{1}{2} m v_4^2 = T_m - T - T_p,$$

d'où nous tirons

$$T = T_0 - T_c - \left(\sum \frac{1}{2}mv^2 - \sum \frac{1}{2}mv_a^2\right)$$

óquation qui, si l'on considère un intervalle de temps suffisamment grand, se réduit, comme nous l'ayons vu, à

$$T = T_n - T_p$$

Le travail utilisé par la machine est donc toujours inférieur au travail moteur dépensé, puisqu'il est égal à ce dernier, diminué du travail des résistances passives,

Du rendement d'une machine. — On appelle effet utile, ou rendement d'une machine, le rapport du travail utilisé au travail dépensé, c'est-à-dire la fraction

$$\frac{T}{T_n} = \frac{T_n - T_p}{T_n} = t - \frac{T_p}{T_n} (*).$$

C'est là l'élément le plus important qu'on ait à considérer dans les machines, quoique cependant ce ne soit pas le seul; car d'autres choses, telles que la facilité de déplacement de la machine, la perfection du travail, l'économie de frais de construction et d'entretien doivent entrer en ligne de compte.

Le rendement d'une machine s'exprime par une fraction donnée ordinairement en centièmes, dont la grandeur permettra d'apprécier la bonté de la machine et l'importance des perfectionnements qui restent à faire.

Disons des maintenant qu'on estime comme excellentes, sous le rapport de l'effet utile, celles qui rendent en travail les 0,50 ou 0,60 de la quantité d'action absolue dépensée par chapithe i. — Travail des forces dans les machines. 157 le moteur, et qu'il en existe un grand nombre, précisément celles qui se distinguent par la complication et la multiplicité des rousges, qui ne rendent pas même 1/2 ou 1/2 de cette quantité d'action.

§ IV. - ÉTUDE D'UN AVANT-PROJET DE MACHINE.

Les considérations qui précèdent suffisent pour faire comprendre la marche à suivre quand il s'agit d'arrêter sommairement les éléments principaux d'une machine, d'en faire l'avantprojet.

Du moteur. — Connaissant la quantité de travail résistant qui doit être vaincue dans l'unité de temps, on connaît par cela même la quantité de travail moteur à développer dans le même temps, c'est-à-dire la force de la machine en chevaux. Le nombre qui correspond au travail des résistances utiles devra être multiplié par un certain coefficient, inverse de celui que nous avons appelé le rendement.

Quant à la nature du moteur, au point de vue mécanique ella est indifférente; c'est uniquement aux conditions économiques spéciales dans lesquelles on se trouvera placé qu'on devra faire appel pour fixer son choix entre les divers moteurs dont on peut faire usage.

Du récepteur. — Les récepteurs sont les premières pièces mobiles qui fassent partie de la machine proprement dite : ils sont en liaison directe avec le moteur d'une part, avec la transmission de l'autre.

Pour chaque moteur en particulier, il faut étudier les divers récepteurs connus. Cette étude se fait dans tous les cours de Mécanique; elle détermine les appareils qui doivent être condamnés d'une manière absolue, et coux parmi lesquels on pourra choisir suivant les cas et qui permettent le mieux à l'agent moteur de développer son action en raison de sa nature et de sa qualité.

Ce n'est pas tout : le choix du récepteur une fois arrêté, nous verrons qu'il existe pour chacun de ces organes une vitesse de régime, une allure normale dont il n'est pas possible de s'écarter beaucoup, sans diminuer, en général, noublement

^(*) Le rendement est égal à $1 - \frac{T_p}{T_m}$, de sorte que la détermination de cette quantité exige que nous étaditons d'une manière complète les différentes causes des resistances pushives qui dintingent ce rendement et la rendent plus on moins inférieur à l'unité.

le rendement de la machine. La vitesse du récepteur peut donc être considérée comme consue à priori, indépendamment de la machine à mettre en mouvement et de l'ouvrage à faire.

mouvement s'écarte le moins possible de l'uniformité.

De l'opérateur. - De même l'outil à employer, la vitesse avec laquelle il doit fonctionner sont deux choses déterminées par la considération de l'économie du travail, mais surtout pur celle de la bonne exécution de l'ouvrage; dans tous les eas, par des considérations dans lesquelles n'entre pour rien le reste de la machino. L'étude des machines-outils doit être à peu prés réservée aux praticiens.

En effet, dans les machines qui possédent le mouvement uniforme, et où les puissances et les résistances agissent d'une manière continue et avec la même intensité d'action, les pièces. se conduisent toujours de la même manière et demeurent saus cesse en contact, sans éprouver aucune secousse nuisible, aucun changement brusque de vitesse; et comme les quantités d'actions élémentaires reçues et transmises par chacune d'elles sont égales et constantes, ou qu'il y a équilibre à chaque instant. de même que pour la machine entière, les chances de destruction sont moindres et l'on peut apprécier dans chaque cas les elforts supportés et la solidité maximum qui convient.

De la transmission, - Nous avons déterminé séparément la vitesse du récepteur et celle de l'outil, le rôle de la transmission est d'établir entre ces deux organes un rapport de vitesses égal au rapport fixé dans l'avant-projet. Les ressources offertes par la Cinématique pour résoudre ce problème peuvent être considérées comme indéfinies, et l'on n'aura pour ainsi dire jamals à se préoccuper de cela dans la fixation des vitesses

De plus, comme il existe pour chaque moteur une vitesse du point d'application qui rend le travail communiqué à la machine un maximum, et que la qualité et la quantité du travall des outils dépendent aussi de leur vitesse et surtout de la constance de cette vitesse, on voit que le cas le plus avantageux possible sera celui où les vitesses des pièces extérieures de la machine seront telles que le réclame chaque genre de moteur et de travail, et resteront invariables pendant le mouvement aussi bien que celles des pièces intermédiaires.

les plus convenables pour le récepteur et pour l'outil.

Dans les machines dont le mouvement est variable d'une mantère sensible, le contraire de tout cela a lieu, sans compter les autres inconvénients qui peuvent y être attachés. Ainsi, par exemple, il pourrait arriver que le mouvement ne pût nucunement naltre ou s'entretenir, parce que, l'action du moteur étant intermittente, il y aurait des instants où celle-ci ayant toute sa valeur tandis que l'autre a atteint le maximum de la sienne, le mouvement de la machine ne pourrait s'entretenir nu passage de ces points morts.

C'est dans la transmission de mouvement que réside l'utilité de la machine : on peut, au moyen d'organes convenablement disposés, transformer et modifier de mille manières le travail fourni par un moteur quelconque. Cependant il ne faut jamais aluser de ces organes qui, en même temps qu'ils facilitent la distribution du travail, augmentent les résistances passives, et par conséquent diminuent le travail utilisé.

> Même en supposant que le mouvement puisse naître et s'entretenir, il n'en résulte pas moins de son état variable que la machine ne travalllera pos sous les conditions les plus avantageuses possibles, et que ses différentes pièces éprouverunt des secousses, des pressions et des dépressions qui altérerent leur constitution et absorberont inutilement une portion du travail moteur.

Du mouvement uniforme (*).

Nous avons vu que, dans la plupart des machines, le travail moteur n'est pas à chaque instant égal au travail résistant correspondant. Tantôt il le surpasse et tantôt il en est surpassé; par suite, le machine s'accélère et se ralentit périodiquement, de manière à gagner ou à perdre dans un temps donné une quantité de force vive précisément égale au double de l'excès positif ou négatif du travail moteur sur le travail résistant pendant le même temps.

^(*) Ce paragraphe est extrait, pour la plus grande partie, des Leçuns profeswas par M. Poncelet à l'École d'Application de Mets.

D'après ces divers inconvénients du mouvement varié, il semblerait qu'on dût y renoncer dans toutes les applications à l'industrie et se borner uniquement aux moyens qui permettent l'uniformité rigoureuse du mouvement, ce qui réduit à n'employer, même pour le récepteur et l'outil, que des pièces de rotation, des courroles sans fin, et à proscrire toute action intermittente de la part du moteur ou de la résistance. C'est à quoi tendent tous les efforts des bons constructeurs et des mécaniciens instruits; mais, quoiqu'on nit résolu la question pour plusieurs machines importantes d'une manière suffisamment approchée, il n'y a pas d'espoir qu'on puisse le faire pour toutes. La nature du moteur et du travail à faire, souvent même des circonstances de localité, et principalement trop de sujétion dans l'exécution matérielle, trop de dépense, s'opposeront à ce qu'on atteigne le but d'une manière satisfaisante; du moins on doit chercher à s'en approcher le plus possible dans chaque cas particulier.

Pour cela, on doit d'abord chercher à supprimer autant que possible les causes du mouvement variable, c'est-à-dire rendre aussi uniformes que l'on pourra l'action de la puissance et celle de la résistance; et dans le cas où cela ne sera pas possible, faire en sorte que les variations de ces deux quantités soient corrélatives, de manière que, dans un temps donné, il y ait toujours égalité entre le travail moteur et le travail résistant.

Outre les deux causes de mouvement variable que nous venons de signaler. Il en existe une troisième correspondant à la distribution dissymétrique des plèces un peu massives qui entrent dans la composition de la machine.

Considérons les roues non centrées, les pièces à mouvement alternatif rectiligne ou circulaire : elles ont un double effet nuisible dans les machines.

1º Le poids de ces pièces produit alternativement un travail positif et négatif, selon que leur centre de gravité s'élève ou s'abaisse, et le terme correspondant, en s'ajoutant ainsi tantôt au travail moteur, tantôt au travail résistant, ajoute un nouvel élément aux causes d'irrégularité inhérentes à la nature même de la puissance et de la résistance.

a. La présence de ces mêmes pièces se manifeste ençore

par une aure influence bien plus nuisible, en ce sens qu'elles introduisent dans l'expression de la force vive du système des termes variables dont l'effet perturbateur croît rapidement avec la grandeur des masses mises en jeu, et plus rapidement encore avec la vitesse dont ces masses sont animées.

La science du mécanicien est de faire en sorte que ces diverses causes d'irrégularité se combattent mutuellement et se compensent le plus exactement qu'il est possible. Quand on a épuisé tous ses moyens d'action dans cette voic, il faut du moins faire en sorte que les excès périodiques du travail moteur sur le travail résistant et du travail résistant sur le travail moteur ne se traduisent pas par une trop grande accélération suivie d'un retard du même ordre de grandeur. On arrive à ce résultat par l'emploi des volants.

Des valants.

Un volant est une grande rone fixée à l'un des arbres tournants de la machine, et préférablement à l'un de ceux dont la vitesse est le plus considérable. Pour bien nous rendre compte du mode d'action d'un volant, faisons abstraction des masses des autres pièces de la machine, et supposons que, pendant un intervalle de temps déterminé, il y ait un certain excès du travail moteur sur le travail résistant.

D'après ce que nous savons, la force vive du volant reçoit pendant le même temps un accroissement numériquement et algébriquement égal au double de cet excès. Or, si l'on assimile ce volant à un anneau dont la masse est M et dont le rayon est égal à R, on aura pour la force vive du volant, ω étant la vitesse angulaire de l'arbre,

Marki.

et pour l'accroissement de ceue force vive, pour un accroissement $\omega'-\omega$ de vitesse,

$$MR^{s}(\omega'^{s}-\omega^{s})=MR^{s}(\omega+\omega')(\omega'-\omega).$$

On voit que, la variation de force vive étant donnée, la diffé-II. 162 DEEXITME SECTION: — DES MACHINES EN MOUVEMENT. reuce of — o sera d'autant plus petite que les trois autres facteurs seront plus grands, d'où l'on conclut que :

Un volant est d'autant plus puissant qu'il a une plus grande masse et un plus grand rayon et qu'il tourne avec une vitesse angulaire plus considérable.

La quantité MR³ s'appelle le moment d'inertie du volant. Nous verrons plus tard la théorie des volants. Dès à présent, on peut observer que ces appareils servent à resserrer entre des limites convenables les variations de vitesse d'une machine. Ce sont, suivant l'expression usuelle, des réservoirs de force vive ou de travail, l'emmagastnant quand la force motrice l'emporte, la restituent lorsque la résistance devient prédominante, le tout sans varier beaucoup de vitesse.

Dans tout ceci, nous avons supposé la machine réglée de manière que son mouvement se compose de périodes régulières pendant chacune desquelles le travail moteur soit égal au travail résistant.

Ceci exige évidemment que, du moment que la vitesse nornule est atteinte ou que la première période est terminée, on change le mode d'action du moteur de manière à lui faire développer moins de travail dans l'unité de temps (la résistance étant supposée constante) que quand ce moteur avait non-seulement à vaincre la résistance, mais à faire acquérir à la machine sa force vive normale.

Les moteurs animés se règlent d'eux-mèmes; les autres exigent ordinairement l'intervention d'un mécanicien. Cette intervention est aussi indispensable quand il arrive accidentellement un accroissement ou une diminution de travail résistant, distincte des variations qui se produisent régulièrement pur suite de la périodicité du mouvement. Dans ce cas, le volant a bien pour effet d'empêcher que cette variation altère trop notablement la vitesse du régime, mais il n'en est pas moins vrai que cette vitesse serait changée pour un temps assez long, jusqu'à une perturbation en sens contraire dont il est impossible de prévoir l'époque, si le mécanicien n'intervenait pas pour rétablir l'égalité troublée entre le travail moteur et le travail résistant.

Nous verrons aussi qu'il existe certains appareils dits régu-

CHAPITRE 1. — TRAVAIL DES FORCES DANS LES MAGRINES. 163 lateurs, au moyen desquels une machine quelconque règle d'elle-même la quantité de travail moteur qu'elle doit dépenser, de manière à maintenir sa vitesse dans de bonnes limites.

Impossibilité du mouvement perpétuel.

On reconnaît par là combien est grande l'erreur de ceux qui cherchent le mouvement perpétuel, c'est-à-dire qui se proposent de trouver une machine à l'aide de laquelle on puisse prodoire du travail utile sans dépense de travail moteur, on au moins produire une quantité de travail utile plus grande que la quantité de travail moteur dépensée. L'étude des solutions proposées est assez curieuse. Beaucoup d'entre elles consistent à fournir à la machine une certaine force vive plus ou moins considérable, en dépensant une certaine quantité de travail moteur. On emploie un volant très-lourd qui peut, en se ralentissant, c'est-à-dire en perdant sa force vive, restituer une partie du travail moteur qu'il a reçu et surmonter des résistances tant qu'il lui restera de la force vive.

J'ai dit que le volant ne restitue qu'ane partie du travail qu'on a dépensé pour le mettre en mouvement. En effet, c'est un banquier toujours disposé à échanger du travail contre de la force vive, et inversement; mais, sous prétexte de résistances passives, il ne manque jamais de retenir tant pour roo sur chaque opération, de sorte qu'il ne faut jamais recourir à son ministère que quand il est impossible de faire autrement.

Mais, dans tous les cas, le travail que la machine peut vainere a toujours une limite qu'on ne saurait dépasser, limite marquée par la demi-force vive acquise, c'est-à-dire par le travail moteur primitivement dépensé.

On emploie d'ailleurs avantageusement une disposition de ce genre quand on veut, au moyen d'une puissance médiocre, surmonter une résistance très-considérable, mais qui ne s'exerce que pendant en temps très-court. Exemples : balancier à lattre la monnaie, presse à timbre sec, etc.

Dans ce cas, l'addition d'un volant permet d'accumuler dans la machine en mouvement une force vive considérable, saus qu'il se produise en même temps une grande vitesse qui serait noisible à l'action du moteur; et lorsque la résistance se pré164 DEUXIEME SECTION. — DES MACRINES EN MOUVEMENT. sente, la machine la surmonte en vertu de la force vive qu'elle possède.

Le volant fonctionne dans ce cas comme une caisse d'épargne; mais il ne faut pas oublier qu'en général ces appareils sont fort lourds et qu'ils augmentent dans une forte proportion les résistances passives de la machine. La tendance est aujourd'hui de les réduire autant que possible en régularisant séparément l'action de la puissance et celle de la résistance. On a ainsi l'avantage de pouvoir, en cas de danger, arrêter presque instantanément la machine qui n'est pas animée d'une force vive bien considérable.

Mais revenons au mouvement perpétuel.

D'autres machines sont plus ingénieuses; elles mettent en jeu les agents naturels les plus divers, les ressorts, le calorique, l'électricité, le magnétisme; le plus fort peut s'y laisser prendre. Mais dès qu'on s'aperçoit qu'une combinaison quelconque conduit au mouvement perpétuel, si bien déguisé qu'il soit, il faut s'empresser de condamner le tout sans appel.

C'est même une méthode, sinon blen philosophique, du moins parfaltement sûre, suivant moi, que celle qui consiste à démontrer certaines lois physiques assez difficiles à établir expérimentalement, en faisant voir que leur négative conduirait nécessairement au mouvement perpétuel. On peut ainsi partir de l'impossibilité du mouvement perpétuel comme d'un axiome très-commode dans un grand nombre de cus.

CHAPITRE II. DES RÉSISTANCES PASSIVES.

Les résistances passives sont des résistances qui se rencontrent nécessairement dans toutes les machines en mouvement, comme une conséquence des conditions générales dans lesquelles une machine quelconque se trouve. On peut les rattacher aux deux classes suivantes :

to Les résistances qui proviennent de la présence de l'air dans lequel se meuvent les diverses pièces, et des supports considérés comme fixes, avec lesquels ces pièces mobiles sont en contact. D'une part, la machine communique au fluide ambiant une certaine quantité de force vive aux dépens de la sienne propre ou du travail moteur qui est obligé de l'entretenir; d'autre part, les supports, qui ne sont jamais absolument inébranlables, détournent aussi à leur profit, ou plutôt à leur détriment, une certaine quantité de force vive sous forme de vibrations qui se propagent de proche en proche et vont se perdre dans la masse de la terre.

2º Dans l'immense majorité des cas, la plus grande partie du travail perdu provient de la résistance spéciale qui a reçu le nom de frottament, et de ses congénères.

On comprendrait difficilement l'existence de ces forces si les solides étalent absolument invariables; mais il n'en est point ainsi. Les solides se déforment, même sons l'influence des forces dont ils subissent l'action dans une machine bien condoite; et cette déformation ne peut s'accomplir que si le travail d'un effort moteur quelconque a surmonté le travail des forces intérieures qui agissent sur les molécules du solide dans son état normal.

Nous avons vu que la somme des travaux des forces inte-

DEUXIÈME SECTION. - DES MACRINES EN MOUVEMENT, ricores, dans un système quelconque, se composuit de termes de la forme

fdr.

f représentant l'intensité de la force qui s'exerce entre doux points mobiles, et de la variation de la distance de ces deux points.

Il y a trois cas limites tout à fait théoriques pour lesquels ce terme est nul: " le cas des corps parfaitement solides, parce que dr=0 et par suite $\int f dr$ =0; 2º le cas des corps liquides regardés comme incompressibles et sans cohésion, parce qu'alors s'ils sont comprimés dr = 0; s'ils ne le sont pas, f = n, et dans les deux cas, $\int f dr = a$; 3° le cas des corps parfaitement élastiques. En effet, le travail résistant produit par l'action d'un corps sur un corps élastique est toujours détruit par le travail de signe contraire que produit ce corps en reprenant sa forme primitive. Ces trois cas étant absolument théoriques, nous aurons toujours des résistances passives dont nous devons étudier l'action.

Nous commencerons, dans ce Cours de première année, par le frottement, la résistance au roulement et la roidour des cordes; dans le Cours de la seconde année, nous terminerons cette théorie par l'étude du choc et par celle de la résistance des milieux.

§ V. - Lois bu FROTTEMENT.

L'expérience prouve que, quand un corps est appuyé sur un plan, et qu'on cherche, en exercant un effort tangentiel, à faire glisser le corps sur le plan, il faut pour cela une l'orce supérieure à une certaine limite déterminée dans chaque cas. De même, lorsque le corps a commencé à glisser sur le plan qui le supporte, on a besoin, pour entretenir son mouvement uniforme, de lui appliquer constamment une certaine force de traction, sans quoi le corps ne tarde pas à s'arrêter.

Considérons le corps au moment où il est équilibre sous

l'influence d'une force qui l'appuie sur le plan P, et d'un effort tangentiel P (fig. 56). La réaction du plan doit être égale et opposée à la résultante de ces deux forces. Donc ce plan. outre la réaction normale que nous avons considérée seule jusqu'ici, est susceptible d'exercer sur les corps une réaction tangentielle qui est connue sous le nom de frottement.

La cause physique du frottement est probablement la déformation naturelle qui se produit sur les deux corps en contact sous l'influence de la pression normale P. Le contact des deux corps ne s'effectue plus alors suivant une surface plane. L'effet de la force F, tant qu'elle reste au-dessous d'une certaine limite, est de faire varier la déformation de manière à déterminer une certaine inclinaison de la réaction du plan sur la normale. Si l'on augmente progressivement cette force F, l'équilibre ne sera plus possible et le mouvement arrivera à se produire.

L'équilibre d'un solide naturel posé sur un plan, sous l'influence des forces F, P et de la réaction R, est d'un genre tout particulier et différe essentiellement de l'équilibre tel que nous l'avons considéré jusqu'ici. Il n'y a plus, à proprement parler, d'équations d'équilibre, du moins entre les forces extérieures, puisque nous venons de voir que l'équilibre ayant lieu sous l'action d'une force F suffisamment petits, on peut augmenter cette force jusqu'à une certaine limite sans détruire l'équilibre (+).

Ce qu'il importe de connaître dans chaque cas, ce sont les conditions qui doivent être remplies pour que l'équilibre établi soit sur le point d'être rompu dans un certain sens, c'està-dire la limite précise au-dessus de laquelle la force F ne saurait croître, dans des circonstances données, sans déterminer le mouvernent du corps dans sa direction.

^{(&}quot;) Hatons-nous de dies que cela tient à en que, at notes augmentons la force F, la réaction Il prend d'elle-même la valeur convenable pour maintenis l'équilibre dans ex nouveau cas. Ce fait est tout à fait mulogée à ce qui sa prodnit quand nous chargeous nos poutro on un plancher. Si nous augmentons la charge, l'equilibre salaiste, la réaction de la poutre augmentant d'une ogale quantité, jusqu'à ce que la charge dépassant la limite de la maistance des matéclaux, l'équilibre seit détent par la cupture de l'appui.

CHAPITRE II. - DES RÉSISTANCES PASSIVES.

Expériences de Coulomb.

La recherche expérimentale des lois qui lient cette limite aux diverses circonstances capables d'influer sur le phénomène a été faite d'abord par Amontons (1696), puis par Coulomb, dont les travaux sur cette question sont restés classiques (*).

Voici quelles sont les lois trouvées par cet illustre expérimentateur :

"Lorsque deux corps sont sur le point de glisser l'un sur l'autre, ou qu'ils glissent effectivement d'un mouvement uniforme, chacun d'eux reçoit de l'autre, en chaque élèment en contact, une réaction tangentielle ou frottement dont le seus est opposé à celui du mouvement relatif acquis ou sur le point de naître.

2º Le frottement est proportionnel à la pression normale et indépendant de l'étendue des surfaces en contact, tant que la nature de ces surfaces et de leurs enduits n'éprouve aucune altération résultant de la pression mutuelle ou de toute autre cause.

3º Sous les mêmes conditions et dans les cas ordinaires de la pratique, le frottement est indépendant de la vitesse relative des corps frottants.

Si P désigne la pression normale, F le frottement, on a. d'après les lois précédentes,

F = fP.

Le coefficient f porte le nom de coefficient de frottement. Il dépend de la nature et de l'état des surfaces en contact, de l'enduit dont elles peuvent être revêtues, et quelquelois du seus dans lequel a lieu le glissement lorsqu'il s'agit de corps fibreux, comme le bois et certains fers à perf.

Distinction du frottement au départ et du frottement pendant le mouvement. — Coulomb a reconnu que la force nécessaire pour rompre l'équilibre est plus grande que celle qui suffit pour entretenir le mouvement uniforme une fois acquis. C'est ce qu'on énonce en disant que le frottement au départ est toujours plus grand que le frottement pendant le mouvement. L'excès est d'ailleurs indépendant de la vitesse, puisque l'expérience constate que le mouvement d'un corps, sous l'influence de la force qui a produit le départ, est uniformément accéléré.

Il faudra done supposer que, dans la formule

$$\mathbf{F} = f\mathbf{P}$$
,

le coefficient f, les corps en contact restant les mêmes, doit être considéré comme syant deux valeurs légèrement différentes, suivant qu'on étudie les conditions de l'équilibre sur le point d'être rompu, ou celles d'un mouvement uniforme dont la vitesse sera d'ailleurs indifférente.

Toutes choses égales d'ailleurs, le frottement est d'autant moindre que les surfaces sont plus polies; mais, quel que soit le poli donné préalablement, le frottement est toujours plus grand lorsque les deux corps commencent à glisser l'un sur l'autre que lorsqu'ils ont pu se roder par un glissement prolongé. Ainsi, une machine neuve a toujours beaucoup moins de douceur dans sa marche qu'une machine fonctionnant depuis un certain temps.

Ceci suppose toutefois que les surfaces frottantes ont été constamment blen graissées. Sans cette précaution les surfaces se grippent, il s'en détache de petits fragments qui les sillonnent de plus en plus profondément, le frottement augmente avec rapidité, et l'échauffement qui en résulte peut aller jusqu'à faire rougir les corps et à les enflammer s'ils sont combustibles.

Observations relatives aux lois du frottement.

Ces lois ont besoin d'être bien comprises pour être appliquées convenablement.

re Par exemple, nous avons dit que le frottement est indépendant de l'étendue des surfaces en contact; mais il faut, pour que cette loi soit vraie, que la surface de l'un des corps

^(*) Des expériences plus précises, entroprises deputs par le général Morin, n'ant fait que vérifier les résultats trouvés par Coulomb.

CHAPITRE II. - DES RESISTANCES PASSIVES.

171

ne devienne pas assez petite ou la pression par unité de surface assez forte pour faire pénétrer l'un des corps dans l'autre, ou sculement pour expulser les enduits. C'est ce qui arrivera nécessairement si l'on diminue par trop les dimensions de l'une des surfaces frottantes, si, par exemple, on va jusqu'à prendre pour cette surface le tranchant de la lame d'un couteau.

2º Le frottement au départ est aussi à peu près indépendant du temps pendant lequel les surfaces ont été maintenues en contact, surtout quand il s'agit des métaux et des corps durs en général.

Pour les bois, cependant, ce frottement paraît augmenter au bout de quelques minutes de repos pour atteindre très-vite un maximum. Ce fait tient probablement à la flexibilité et à l'élasticité des fibres du bois, qui cèdent plus facilement que les molécules métalliques à l'influence d'une pression un peu prolongée. Cette influence serait encore plus saillante si les endults avaient pu être expulsés ou altérés d'une manière quelconque; elle est évidemment du même ordre que la différence entre le frottement au départ et le frottement pendant le mouvement.

3º Enfin on a annoncé, convairement aux lois de Coulomb, que le frottement diminue quand la vitesse augmente. Il est facile d'avoir l'explication des faits observés, qui, d'ailleurs, se rapportent tous au cas où il y a un enduit interposé.

Effets des enduits. — Le frottement qui s'exerce par l'intermédiaire d'un enduit dépend de la vitesse des corps en contact et aussi de l'étendue des surfaces; mais l'effet de ces deux éléments est indirect, en ce sens qu'ils influent principalement sur le mode d'action de l'enduit, et par conséquent sur la grandeur du coefficient de frottement.

Dans toutes les expériences relatives au frottement des corps graissés, il faut avoir soin de s'assurer que les enduits ne sont ni altérés ni expulsés. Si l'on veut, par exemple, comparer les divers enduits au point de vue de l'atténuation du frottement, il faut se garder de faire cette comparaison toutes choses égales d'ailleurs. On doit au contraire se préoccuper de mettre chaque substance dans les conditions qui lui sont le plus favorables, et ne l'employer dans la pratique que lors-

qu'il sera possible de réaliser ces conditions, au moins dans une certaine mesure.

On peut poser comme principe général que le meilleur enduit est le plus fluide, c'est-à-dire qu'il y a avantage, quand on le peut, à remplacer la graisse par l'huile, l'huile par l'eau, enfin l'eau par l'air, ce qui revient à supprimer tout enduit. Mais ceci suppose évidemment la condition que la vitesse solt assez grande dans chaque cas pour ne pas expulser l'enduit expérimenté. Or, il faut une vitesse assez considérable pour que les pièces gardent un enduit fluide comme l'eau, ou même laissent entre elles une gaine d'air; dans ces conditions, M. Hirn a vu avec étonnement le frottement presque complétement supprimé entre deux pièces frottant sans enduit avec une vitesse énorme. Cette suppression était due à l'action du coussinet d'air interposé, matière parfaitement élastique.

Les expériences récentes faites sur le chemin de fer glissant de M. Girard confirment ces indications relatives à la proportion considérable dans laquelle le frottement se trouve réduit par l'interposition de l'eau.

Les voitures de M. Girard reposent sur des rails en fonte au moyen de 4 patins de o^m,26 de largeur sur o^m,80 de longueur. Dans ces conditions, le coefficient de frottement est

$$f = 0.52$$
.

Au moyen d'une pression suffisante, on force de l'eau à s'interposer entre les deux surfaces glissantes; alors le coefficient est réduit à f' = 0.004.

On obtiendrait une atténuation encore plus grande si l'on substituait l'uir à l'eau, en s'arrangeant toujours de manière à forcer l'air à s'interposer entre les surfaces en contact.

Ainsi, malgré les avantages de la fluidité, on devra employer un enduit d'autant plus consistant que les surfaces seront soumises à des pressions plus considérables. Et le progrès cousistera dans chaque cas à chercher des dispositions qui permettent d'augmenter la fluidité de l'enduit sans tomber dans des inconvénients d'un autre genre.

Ces détails de graissage sont au nombre des questions dont

l'importance pratique est le plus considérable. La substitution de l'huilc à la graisse et du graissage continu au graissage intermittent constitue un véritable progrès, soit dans les machines fixes, soit dans les locomotives.

Le tableau suivant est destiné à donner une idée de la grandeur du coefficient f dans les conditions qui se présentent le plus habituellement dans les machines.

I. Coefficients be protessent des surfaces planes lorsqu'elles ont eté quelque temps en contact.

	Fibres parallèles	Surfaces sans unduit. Surfaces frottées de	0,62
Chène sur chène		10YOU 365	0.11
	Fibres perpendiculaires	Surfaces sons enduit.	0,75
	Second Legislation and the second	d'enu	6,71
	Bois debout sur bois à plat.	Surfaces sans enduit.	0,53
		Surfaces sans enduit.	0,51
Per ser state	Fibres parallèles au mouve-	Surfaces moulllées	
Fer aur chêne	ment	d'eau	0,63
		Surfaces graissées	0,15
Posts were direct		Sarfaces on pen onc-	
ronte sur lente	tva like like karantara and and	tuenses	0,16
400.00		(Surfaces un peu oue-	
For sue fonte		incuses	0.10
П. Совернивать	DE PROTTEMENT SES SUBFACES	PLANES EN MOUVEMENT.	
	1	Surfaces min enduit.	0.48
	Fibres parallèles	Surfaces frottées de	
	75.0	savon sec.,	0,16
Chène sur chène	(Surfaces sam anduit.	4,35
	Vibres perpendiculaires	Surfaces monthlees	
		d'enu recerveres	0,25
	Bois debuut me hois à plat.	Surfaces sans endult.	0,19
Franc, sapin, hatre,	(Suchees sons en-	
pairier saurage, sor- bier : sur ching	Filtres parallèles	dult 0,36 A	0,40
Fer ou chône.	Vibres parallèles en mou-	Surfaces sans endult.	0,62
		Surfaces scouttlers	
		d'enu	0,26
	Tements siteses and services	Surfaces fruttées de	
		savou sec	0,21

Surfaces on per opeincuses 0,18

Fer nur fonto al sur

CHAPITEE	11	DES	RESISTANCES	PASSIVES.
			13	Surfaces un peu ani

Fonte sur brance	************	Surfaces un peu one-	0.13
Chens, orms, charms, feate, fer, acier, bronze	L'un sur l'autre, on sur aux-mêmes	Enduit ordin**, suif, saindoux. 0,07 h Enduit sons cesso re- nouveid. 0,04 s Surfaces légèrement obstucuses	0,05

III. CORFFICIENTS OF PROTTEMENT DES TOUBILLONS SUE LEURS COUSSINETS

		GRAINAGE			
For sur fanie ou sur bronze, graissago d'huile	ordinatru:		sortine.		
d'olice, de saindonx ou de suif	0,07	4 0,08	0,04 6	0,05	
Fonte aur fonte ou sur bronze, surfaces onc-	0,14	h 0,16	W	M	
Fer sur bronze, surfaces très-peu onetuonses of commonçant à se roder.	w	0,25	.,	ř.	

Travail du frottement.

Dans l'équation des forces vives, nous avons à considérer le travail du frottement qui devra entrer dans les équations comme s'ajoutant au travail résistant utile pour reproduire l'équivalent du travail moteur dépensé.

Pour un espace ds parcouru par un corps mobile glissant sur un solide fixe dans le sens du plan de contact, le travail élémentaire du frottement est fNds.

Si les deux corps sont mobiles, il y aura à considérer les deux forces de frottement qui ont pour valeur commune fN et qui agissent sur chaque corps en sens inverse de son mouvement relativement à l'autre, chacune d'elle produisant du travail (fig. 57).

Supposons que les mouvements des deux corps s'effectuent dans le sens des flèches ι , ds et ds' étant les chemins respectivement parcourus dans cette direction, qui sera celle du mouvement relatif du corps A si ds est > ds'.

Si nous considérons le mouvement du corps A, le frottement produira un travail égal à f'Nds, qui devra être affecté du signe — puisque la direction de fN est inverse de celle de ds; ce sera donc un travail résistant. Au contraire, le frottement

174 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT.

de B sur À produira sur ce premier corps un travail positif

f Nds' qui se retranchera du travail résistant f Nds, de sorte
qu'en somme le travail résistant produit par le frottement seu
en valeur absolue

fN (ds - ds'),

ds - ds' étant positif d'après l'hypothèse que nous avons faite. Si ds - ds' devient négatif, l'équation n'a plus lieu. Il faudra changer le seus du frottement, et au lieu d'avoir f'N (ds - ds') on a

fN (ds' - ds).

de sorte que le travail du frottement est encore négatif.

Remarquons lei que le travail développé par le frottement sur l'un des deux corps est positif; le frottement joue done relativement à ce corps le rôle de force motrice. Les transmissions de mouvement par cylindres, cônes ou plateaux de friction sont fondées sur cette propriété,

§ VI. — ÉQUILIBRE DES MAGRINES SIMPLES EN AVANT ÉGARD AU FROTTEMENT.

La connaissance des lois qui précédent nous permet d'introduire la considération du frottement dans l'étude de l'équilibre des principales machines et de leur mouvement uniforme.

Quand nous nous occuperons de l'équilibre, il faudra toujours supposer que l'équilibre est sur le point d'être rompu dans le sens de la puissance, car autrement le problème ne serait pas déterminé.

Connaissant toutes les forces qui agissent sur un solide donné, décomposons toutes ces forces normalement et parallèlement à la face par laquelle le corps dont on cherche les conditions d'équilibre est en contact avec un autre corps sur lequel il est susceptible de glisser.

Soit N la somme des composantes normales, N représentera précisément la réaction normale de l'appui; et s'il n'y avait pas de frottement, il faudrait pour l'équilibre que la somme des composantes tangentielles fût rigoureusement égale à zéro.

Nous savons maintenant que cette condition n'est pas indis-

pensable (*). Du moment que l'appui est soumis à une pression N, il est susceptible de développer une réaction tangentielle dont la limite est représentée par fN. Il suffra donc pour l'équilibre que la somme T des composantes tangentielles soit plus petite que cette limite fN, et en posant l'équation

$$T = fN$$
.

nous aurons l'équation de l'équilibre sur le point d'étre rompu dans la direction de la force T.

Alors la réaction R de l'appui est la résultante de la réaction normale N et de la réaction tangentielle fN, dont la direction est opposée à celle du mouvement sur le point de naître. Cette réaction, pour l'équilibre près d'être rompu, fait donc avec la normale un angle \(\varphi\) déterminé par l'équation

$$tang \varphi = \frac{f N}{N} = f.$$

Quant à sa grandeur, on l'obtient par les formules ordinaires

 $\mathbf{R}^{z} = \mathbf{N}^{z} (\mathbf{r} + f^{z}),$

d'où

$$R = N\sqrt{t + f^2} = \frac{N}{\cos \varphi},$$

$$N = \frac{R}{\sqrt{t + f^2}} = R\cos \varphi,$$

et pur suite

$$F = \frac{fR}{\sqrt{1+f^2}} = f_i R = R \sin \varphi,$$

^(*) On you que la considération du fectionent n'introdoit aucuse nouvelle condition d'équilibre, puisque, si l'équilibre a déjà lieu sans le frottement, c'est que la composante tangentielle des forces est nulle. An contentre, le frottement pourra établir un équilibre qui sans lui n'existerait pas, puisqu'il suffit que la force tangentielle soit inférieure à une certaine limite pour que le frottement empéche tout déplacement de se produire. C'est sinsi qu'un système peut être en équilibre sam que les comittions trouvées en statique soient rigourement satisfaites, riqueur qu'il serait pour nimi dire impossible d'obtenir. Pourva que ces conditions soient à peu prés remplies, et que la somme des travaux virtuels des forces suit peu différente de xère, l'introduction des travaux virtuels des forces de frottement suffire pour rendre cette somme unile.

176 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT. en désignant par f_i le sinus de l'angle ϕ dont f représente la

tangente.

 f_i est généralement peu différent de f_i car l'angle ϕ est toujours assez petit.

Quoi qu'il en soit, on peut donner de la force du frottement les deux expressions sulvantes :

$$F = fN$$
, $F = f$, R ,

suivant que l'on connaît la pression normale N ou la réaction totale R.

Application au plan incliné.

Supposons un corps A posé sur un plan incliné et soumis à l'action de son poids et d'une force Q qui s'oppose à sa descente (fig. 58). Quelles sont les conditions d'équilibre? Ces conditions sont au nombre de trois.

to Il ne faut pas qu'il y ait écrasement du corps; nous avons dit précédemment tout ce que nous pouvons dire sur cette question, nous n'y reviendrons pas.

2º Il ne faut pas qu'il y ait renversement ou rotation du corps autour de l'une des arêtes du polygone d'appui sur ce plan, ce qui exige, comme nous avons déjà en occasion de le dire, que la résultante des forces qui agissent sur lui vienne rencontrer le plan incliné dans l'intérieur du polygone des points d'appui.

3º Enfin le glissement du corps le long du plan doit être impossible; de là une dernière condition sur laquelle nous n'avons pas insisté: nous y revenons. Cette condition serait, sans l'existence du frottement, que la résultante de toutes les forces qui s'exercent en debors du plan fût normale à ce plan et qu'elle tendit à appuyer le corps sur le plan.

Si l'on tient compte du frottement il n'y a plus, à proprement parler, de condition de nature à s'exprimer par des équations entre les forces extérieures indépendamment des réactions; il faut, pour préciser la question, demander que le mouvement soit sur le point de nattre dans un sens déterminé.

Supposons, par exemple, que le mouvement soit sur le point de naître dans le sens descendant, c'est-à-dire que la force Q CHAPITER II. - DES RÉSISTANCES PASSIVES.

177

soit tout juste suffisante pour retenir le corps sur le plan

(fig. 59).

La réaction totale est, dans ces conditions, une force R faisant avec la normale AN un angle o dans le sens ascendant. Il faut que les forces P, Q, R se fassent équilibre, c'est-à-dire que chacune d'elles soit égale et directement opposée à la résultante des deux autres. Donc, étant donné l'angle v. l'inclinaison du plan, le poids P, on peut trouver quelle est la force qu'il faut appliquer dans une cermine direction pour retenir le corns sur le plan. Il suffit de décomposer P en deux forces dirigées l'une suivant la direction donnée nour la force Q, l'autre suivant la ligne faisant avec la normale au plan incliné l'angle o dans le sens convenable. On voit que la force Q est représentée par une ligne partant du point P et terminée à la ligne AR'; elle a sa plus petite valeur possible forsque sa direction est perpondiculaire à celle de la réaction R, c'est-à-dire lorsqu'elle fait avec le plan incliné et dans l'intérieur de ce plan un angle égal à c. Si l'on veut que ce minimum soit égal à zèro, il faut que l'Inclinaison du plan sur l'horizon soit égale à o; alors le corps ne tend pas à glisser.

Si l'inclinaison descendait au-dessous de zéro, c'est-à-dire de ce que l'on appelle l'angle de frottement, il faudrait appliquer au corps une force descendante indépendamment de son poids pour le faire descendre le long du plan.

Si le corps tend à monter (fig. 60), c'est-à-dire si la force Q est telle, qu'une force un peu plus grande fasse monter le corps, il faudra placer la réaction R à gauche de la normale : les conditions d'équilibre sont d'ailleurs les mêmes; le minimum est différent.

En résumé, les conditions auxquelles doivent satisfaire pour l'équilibre les forces appliquées à un corps pressé contre un plan fixe se réduisent aux deux suivantes :

1" La résultante de ces forces doit passer assez loin de toutes les arêtes de contact pour que l'écrasement ne soit pas à craindre, eu égard à la nature des matériaux.

2ª Elle doit faire, avec la normale au plan d'appui, un angle inférieur à l'angle de frottement.

CHAPITHE II. - DES RÉSISTANCES PASSIVES.

179

Application au treuil.

Considérons un corps solide assujetti à tourner autour d'un axe fixe. Sous l'influence des forces directement appliquées au corps tournant et des réactions de ses appuis, le système est en équilibre, mais le mouvement est sur le point de naître dans un certain sens. Cherchons les conditions qui doivent être remplies pour cet équilibre particulier en tenant compte des frottements de toute espèce qui se manifestent aux points de contact des parties mobiles avec les différents appuis fixes.

Si l'on se reporte aux leçons consacrées à la description des organes de machines, on sait qu'on assure l'invariabilité des axes de rotation de la manière suivante : on tourne exactement deux parties spéciales de l'arbre que l'on appelle des tou-rillons; ces tourillons frottent sur des conssinets bien graissés contenus dans des espèces de boîtes (paliers ou colliers) qui sont elles-mêmes solidement fixées au bâti général de la machine, et qui s'opposent à tout déplacement transversal de l'axe.

Il faut encore rendre le déplacement longitudinal impossible. Il y a plusieurs procédés que nous avons aussi décrits procédemment. C'estau moyen d'un pivot portant sur une crapaudine que l'on produit cet effet dans le cas d'un arbre vertical, et au moyen d'un épaulement convenablement placé dans le cas d'un arbre horizontal (fig. 64 et 65).

Enfin certains arbres, comme les arbres de tour en fer, tournent sur pointes, c'est-à-dire que les tourillons sont remplacés par des pointes coniques tournant dans des trous pratiqués dans des plaques d'acier qui s'opposent en même temps aux déplacements longitudinaux et transversaux.

Frottement des tourillons. — Occupons-nous d'abord du frottement des tourillons sur leurs coussinets, et supposons que les deux forces P et Q, qui agissent sur la machine, soient situées dans des plans perpendiculaires à l'axe, ce qui supprime toute tendance au mouvement longitudinal (fig. 61).

Je puis remplacer les deux forces P et Q chacune par une force et un couple, c'est-à-dire que je puis les supposer appliquées toutes deux à l'axe, en introduisant deux couples dont les moments seront Pp et Qq, et qui ne presseront pas l'arbre sur ces supports. Cela iait, je décompose la force Q en deux autres mQ, m'Q, appliquées aux deux tourillons. J'opère de même pour la force P, et soient nP, n'P ses composantes. On a évidemment

$$m + m' = 1, \quad n + n' = 1.$$

Considérons l'un des tourillons, celui, par exemple, auquel sont appliquées les forces nP et mQ (fig. 6x)(*). Ce tourillon repose dans l'œil du coussinet qu'il touche en un certain point. Il faut évidemment, pour qu'il y ait équilibre, que la résultante des forces qui lui sont appliquées passe par le point de contact du tourillon sur le coussinet, sans quoi il y aurait roulement et déplacement du point de contact. Il faut en ontre que cette résultante soit telle, que si on la décompose en deux, dirigées l'une suivant la normale, l'autre suivant la tangente, cette dernière soit égale à la force normale multipliée par le coefficient de frottement f, ce qu'on peut énoncer encore en disant que la résultante fait avec la normale l'angle de frottement.

Or, si R désigne cette résultante appliquée au point de contact du tourillon, on a

$$R^2 = m^2 Q^2 + n^2 P^2 + 2mQ \cdot n P \cos \overline{mQ \cdot n P}.$$

Le frottement est égal à f.R. de sorte que, pour un tour complet du tourillon, il y nora un travail résistant représenté par le produir

p étant le rayon du tourillon. On aura à l'autre tourillon un travail analogue dont l'expression sera

en supposant, ce qui a toujours lieu, que les rayons des deux tourillons soient égaux, R' étant donnée par une équation de même forme que celle qui détermine R.

$$R'^{2} = m'^{2}Q^{7} + n'^{2}P^{2} + nm'Q \cdot n'P \cos m'Q n'P$$
.

^(*) Le fig. 62 montre scalament la résultante il et ses douz composantes, l'ene taugentielle au tourillen, l'autre normale,

180 DEUXIEME SECTION. - DES MACHINES EN MOUVEMENT.

Donc, enfin, l'équation du travail deviendra, en introduisant ce travail du frottement comme s'ajoutant au travail résistant utile,

 $Pp - Qq - f_1(R + R')\rho = o(*).$

On voit que le travail du frottement diminue quand on diminue le rayon p des tourillons. Donc, quand on le peut, il y a avantage à avoir des arbres tournant sur pointes. Cependant la diminution du rayon doit avoir une limite pour deux causes : d'abord, parce que les tourillons doivent pouvoir porter l'arbre, et ensuite parce que, à partir d'une certaine limite, quand on diminue p, on augmente en même temps beaucoup le facteur f, par suite de l'expulsion des enduits; de sorte qu'on perd plutôt qu'on ne gagne. C'est à la pratique de reconnaître quelle est, dans chaque cas, la solution la plus ayantageuse.

L'équation du travail écrite précédemment permet de trouver la puissance P nécessaire pour tenir en équilibre une résistance donnée Q. Il faut, dans cette équation, remplacer R et R' par leurs valeurs. Or, R et R' sont deux radicaux sous lesquels P entre au carré. Donc, si l'on voulait faire disparaître les radicaux pour trouver P, on arriverait à une équation du quatrième degré impossible à résoudre par les méthodes élémentaires.

Ce n'est pas la méthode employée habituellement; on peut opérer de deux manières :

t° Par approximations successives, en present pour valeur approchée de P cella qu'on obtient en négligeant le frottement, c'est-à-dire en posant

$$P_P = Q_q$$
.

On se servira ensuite de cette première valeur pour calculer la correction qui représente le travail du frottement et en déduire une seconde valeur plus approchée de P, et ainsi de suite.

2º Par une sutre méthode indiquée par le Général Poncelet

et qui peut servir dans besucoup de cas analogues. Elle consiste à trouver une fonction rationnelle équivalente à une fonction radicale. D'abord, tout radical de la forme

$$\sqrt{x^3 + y^2} - 2xy \cos\theta$$

peut se meure sous la forme

$$\sqrt{a^2 + b^2}$$

En effet, on a

$$\sqrt{x^3 + y^2 - 2xy \cos \theta} = \sqrt{(x - y \cos \theta)^2 + y^3 \sin^2 \theta}.$$

Si l'on cherche ensuite à égaler le radical $\sqrt{a^2+b^2}$ à une expression de la forme $a\alpha+b\beta$, on arrive à une équation à laquelle il n'est pas possible de satisfaire en laissant a et b quelconques; mais on peut trouver les valeurs les plus convenables des coefficients α et β , de manière que l'équation soit vérifiée avec la plus grande approximation possible.

On trouve ainsi:

is a et b étant quelconques,

$$\sqrt{a^3 + b^3} = 0.83 (a + b) \hat{a} \frac{1}{6} \text{ près};$$

2" Si l'on suit que a>b, on a

$$\sqrt{a^2+b^2}=0$$
, $96a+0$, $60bh\frac{1}{25}$ près;

3º Si enfin a est > 4b, on peut poser

$$\sqrt{a^2 + b^2} = a,996 a + a,123 b à \frac{1}{266}$$
 près.

Frottement des épaulements. — Il nous reste, pour avoir étudié complétement la question des arbres, à examiner le frottement sur les épaulements. Supposons qu'il y ait dans l'axe une force T dirigée dans le sens de la longueur et qui tende à appuyer le corps contre un épaulement (fig. 63).

L'aire d'un élément de la surface frottante est

Soit S la surface totale, et supposons que la pression T se

^(*) Pour appliquer cost à la poulie, il fant, dans le travail du frostement, prendre le rayon de l'axè de la poulle si est axe est mobile, et le rayon de l'aril de le poulie si l'axe est fixe.

182 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT. répartisse également sur la surface; la pression sur l'élément considéré sera

T rd0 dr.

et le frottement particulier correspondant à cet élément sera

$$\frac{\mathrm{T}}{\mathrm{S}} frd\theta dr$$
.

Le moment de ce frottement autour de l'axe de l'arbre sera évidemment

T fridodr

d'où, pour le moment total, ou a la somme des moments élémentaires

 $f_{\overline{S}}^{T} \int \int r^{\epsilon} d\theta dr$.

Intégrant d'une part de o à 2π , de l'autre entre les limites r, et r, il vient

 $2\pi f \frac{\mathbf{T}}{\mathbf{S}} \left(\frac{r^4}{3} - \frac{r_s^4}{3} \right)$.

Or,

$$S = \pi (r^i - r^i),$$

donc le moment est

$$\frac{2Tf(r^2+rr_0+r_0^2)}{3(r+r_0)}.$$

En faisant $r_i = 0$, on aurait la formule du frottement des pivots (*),

Effet d'une force parallèle à l'axe et en dehors de cet axe.

On peut encore avoir une force F agissant parallèlement à l'axe, mais hors de cet axe (fig. 66). On la remplacera par une force F, agissant dans l'axe et un couple (F, F,) parallèle à cet axe. On pourra tourner ce couple comme on voudra dans son plan, et faire en sorte que ses deux forces passent respectivement par les points d'appui des deux tourillons.

Une pareille force augmentera donc à la fois le frottement sur les tourillons, et le frottement sur les épaulements.

Frottement des excentriques et des boutons de manivelle.

Un bouton de manivelle est un tourillon qui se meut dans un coussinet mobile. Le travail du frottement qui se développe dans son mouvement se détermine, comme pour un tourillon, en considérant le mouvement relatif du bouton dans le coussinet mobile.

L'excentrique n'étant qu'une manivelle dont le bouton a été agrandi de manière que sa surface enveloppe l'axe de rotation de l'arbre, le travail du frottement se détermine pour un excentrique comme pour une manivelle. Il est évident que le travail du frottement dans la manivelle est de beaucoup moins considérable que dans l'excentrique, à cause du facteur qui représente le chemia parcouru; aussi n'emploiera-t-on ce dernier organe que lorsqu'il ne devra être soumis qu'à de petites pressions. Dans le cas d'efforts considérables, on se servira plutôt d'une manivelle.

§ VII. — DE L'ARC-BOUTEMENT.

L'introduction du frottement dans la théorie de l'équilibre et du mouvement uniforme d'une machine quelconque se fait en suivant la marche dont nous venons de donner deux exemples. Je veux seulement insister sur les cas où le frottement empêche, d'une manière absolue, certains mouvements géométriques, ce que le calcul nous apprend en nous disant qu'il faudrait, pour les produire, une force infinie. On dit alors qu'il y a arc-boutement.

^(*) Il arrive quelquefois qu'en vue de diminuer le travail du frottement, en termine l'extremité inférieure du pivet par une surface convere, sinsi que le fond de la crapaudine (fig. 65); il faut alors mettre pour r le rayon du petit cercle de centaet, qui a toujours une certaine étendue à cause de la cumpression et de l'usure.

On diminue ainsi, non le frottement lui-même, qui est indépendant de l'étendue des surfaces, mais son travail, qui dépend du bras de levier moyen, lequel est proportionnel à r.

CHAPITUR II. - DES BÉSISTANCES PASSIVES.

185

à loquelle il faut ajouter, pour l'équilibre de chacun des solides latéraux.

 $Q = N \frac{\cos(\alpha + \phi)}{\cos \alpha}$:

 $P = 2Q \tan (\alpha + \varphi)$.

on a donc

Cette relation donne P = m pour a = 900 - o. Le coin est alors très-obtus et incapable de s'enfoncer (fig. 69) (*).

Supposons maintenant le mouvement sur le point de nattre dans l'autre sens, c'est-à-dire le coin près de remonter sous l'influence des efforts latéraux. Pour avoir les formules qui conviennent à ce cus, il faut changer les signes des forces tangentielles, ou celui de l'angle o dans le résultat final. On a

$$P = 2Q \tan (\alpha - 9)$$
.

Pour $\alpha = \varphi$, on a P = o. Si donc l'angle au sommet est plus petit que le double de l'angle de frottement (fig. 70), il n'y aura pas besoin de force pour maintenir le coin enfoncé, quels que soient les efforts latéraux. Tel est le principe de la presse à coin.

Équilibre de la vis.

Considérons (fig. 71) une vis à filets carrés, chargée d'un poids Q, et sur la tête de laquelle est appliqué un couple horizontal, dont le moment est Pp. L'écrou est maintenn fixe, et on suppose que la vis soit sur le point de monter sous l'effort du couple Pp, malgré la résistance Q.

Dans ces conditions, l'équilibre a lieu entre les forces directement appliquées à la vis, et les réactions qu'elle reçoit de l'écrou. Soit r le rayon de l'hélice moyenne, i son inclinaison à l'horizon; neus admettrons que les actions mutuelles R qui s'exercent aux divers points de contact de la vis et de l'écrou sont toutes égales, et disposées symétriquement dans des plans

Équilibre du coin.

La presse à coin consiste en un prisme triangulaire, au on enfonce entre deux pièces qu'il s'agit d'écarter en exercant une forte pression sur les matières qui s'opposent à cet écattement (fig. 67).

Soit P l'effort exercé sur la tête du coin, c'est-à-dire sur la face horizontale supérieure, on demande quels sont les efforts qui en résultent sur les faces latérales, efforts qui sont égatix et directement opposés aux réactions des corps pressés sur le coin.

Si l'on néglige le frottement, ces réactions sont normales aux faces correspondantes, et il faut pour l'équilibre que les trois forces P, N, N', auxquelles est soumis le coin, se rencontrent en un même point A, et que, de plus, chacune d'elles soit égale et directement opposée à la résultante des deux autres. De sorte que, si on décompose la force P en deux autres AD, AC dirigées suivant les normales aux faces latérules, les longueurs AD, AC représentent les réactions exercées sur ces faces. Or, le triangle ABC est semblable au triangle section droite du coin; donc on peut énoncer le théorème en disant que les pressions sont entre elles comme les votes du triangle section droite du coin.

Quand on veut tenir compte du frottement, il faut considérer les réactions comme inclinées sur les plans de contact. A l'instant où le coin est sur le point de descendre, ces réartions font avec la normale un angle égal à \u03c4, du côté du ham.

Supposons le coin isocèle (fig. 68), et soit au l'angle au sommet. Le coin est serré entre deux corps soumis chacun à une force horizontale. Dans l'état d'équilibre, les deux forces laterales ont une valeur commune Q, sans quoi tout le système se déplacerait dans le sens de la plus grande, Cette condition est la scule qui soit fournie par l'équilitire de l'ensemble.

Cela posé, l'équilibre du coin donne l'équation

$$P = 2N \frac{\sin(\alpha + \varphi)}{\cos \varphi},$$

^{(&}quot;) On fait abstraction lei du frottement cofre les blocs A et li et leurs supports.

186 DEUXIEME SECTION. - DES MACHINES EN MOUVEMENT.

tangents au cylindre sur lequel est tracée l'hélice moyenne. Ces réactions (fig. 72) font un angle φ avec la normale aux surfaces en contact, par suite, un angle égal à $i+\varphi$ avec la génératrice du cylindre; et l'on a pour l'équilibre de la vis les équations

$$Q = \sum R \cos(i + \varphi), \quad P_p = \sum Rr \sin(i + \varphi);$$

d'où, en éliminant∑R,

$$Pp = Qr \tan (i + \varphi),$$

Pour

$$i + \varphi = 90^{\circ}$$

le moment Pp est infini, ce qui montre qu'il n'est pas possible de vaincre le frottement qu'une charge, aussi faible qu'on le voudra, détermine sur une vis à pas très-allongé.

On passe au cas du mouvement descendant en changeant le signe de \(\phi \) dans les équations précédentes. Si l'on résout l'équation ainsi obtenue par rapport à Q; qui joue dans le cas actuel le rôle de puissance, on trouve

$$Q = \frac{p_p}{r} \cot(i - \varphi);$$

Q est infini pour $i = \varphi$. Donc, pour une vis à filets peu inclinés, ce qui est le cas des vis de pression, aucune force dirigée dans le sens de l'axe ne pourrait desserrer la vis. Pour $i < \varphi$, la pression Q étant donnée, on trouve pour Pp une valeur négative, ce qui Indique que, pour desserrer la vis, il faut lui appliquer un couple agissant dans le même sens que la force Q, seulement l'effort à exercer est assez faible.

On trouverait des résultats du même genre en supposant la vis fixe et l'écrou mobile. Dans les cas ordinaires, il est tout à fait impossible de desserrer un écrou par un effort de traction, tandis qu'un couple assez petit est suffisant.

Quand on craini que des vibrations répétées n'amènent ce résultat à la longue, on emploie un contre-écrou, dont l'effet est d'empêcher l'écrou proprement dit de tourner, ce qui ne pourrait se faire sans soulever le contre-écrou.

- Prisons des bocards.

Soit AB (fig. 73) une tige de pilon dirigée dans son mouvement par quatre guides. Cette tige est armée d'un mentonnet sur lequel s'exerce l'action de la came. Soit N la pression de la came perpendiculaire au mentonnet, Q le poids du bocard et de la tige. Cherchons les conditions d'équilibre qui conviennent au cas où le mouvement est sur le point de naître dans le sens de la puissance de P (*).

Rtudions géométriquement le phénomène. L'effet de la force P sera d'abord d'appuyer la tige aux points a et a' et de lui faire quitter les deux autres guides, au contact desquels il n'y aura aucune pression, partant aucun frottement. Donc l'équilibre a lieu sous l'influence des forces P, Q, des réactions normales et des réactions tangentielles des points a et a', ces dernières étant dirigées yers le bas de la figure.

Projetons sur la verticale, nous aurons

$$P = 2fN + Q;$$

prenons les moments par rapport au point O pris sur l'axe de la tige, nous trouverons

$$Pb = Nl;$$

en éliminant N entre ces équations, nous aurons

$$P = Q + 2f \frac{Pb}{I}$$

d'où

$$\mathbf{P} = \frac{\mathbf{Q}I}{I - 2fb} = \mathbf{Q} + \frac{2fb\mathbf{Q}}{I - 2fb}.$$

Le second terme mesure l'influence du frottement; il peut deventrinfini si l'on a

$$l = 2fb;$$

alors le glissement est impossible, et l'équilibre a lieu entre la puissance et la résistance par l'intermédiaire de réactions

^(*) On fait encore abstraction lei du frottement de la came sur le men-

qui font avec les normales aux surfaces pressées des angles plus petits que l'angle du frottement. Ce genre d'équilibre particulier s'appelle arc-boutement.

PREMIER EXEMPLE. — Falet de menuisier. — On connaît cet instrument en fer qui sert au menuisier pour fixer sur son

établi le bois qu'il travaille (fig. 74).

L'établi est percé d'un trou dans lequel on introduit la pièce en fer V, qu'on enfonce d'un coup de maillet. Le morceau de bois mn se trouve alors très-solidement assujetti; c'est à-dire que, quelque grand que soit l'effort P qu'il exerce pour sou-lever le valet, tout mouvement de ce genre est impossible. Au contraire, on desserre facilement le tout par un coup frappé en K ou en L dans la direction de la flèche. Cherchons les conditions pour que le mouvement soit sur le point de naître dans le sens ascendant, sous l'influence de la force P et du poids Q appliqué en G.

Nous aurons deux forces extérieures, l'une Q, le poids du valet, l'autre P, la réaction de la pièce de bois pressée. Les forces P et Q ont pour résultante une force S qui leur est parallèle et située du côté de la plus grande P. Il faut pour l'équilibre que les réactions R et R' se coupent sur la direction de cette force, chose qui n'est pas possible avec les dimensions

ordinaires.

Donc le mouvement dans le sens ascendant n'est pas possible. Alors, dans l'équilibre comme il est établi, les réactions ne font plus avec la normale un angle q. Elles font un angle plus petit et se disposent de manière que leurs directions vont précisément se couper sur la direction de S, et que la résultante de ces réactions est égale et directement opposée à S. Si l'on exerce au point K une force ascendante détruisant l'effet de la force Q et remplaçant cette force par une autre en sens contraire, on déplacera la résultante S et on l'amènera au point H, où se croisent les réactions dont l'inclinaison sur la normale est celle qui convient à la rupture de l'équilibre. Ainsi se trouve desserré le valet.

DEUXIBRE EXEMPLE. — Enoliquetage à frottement. — Les mêmes principes nous expliqueront comment on exécute, ainsi que nous l'avons dit en Cinématique, des encliquetages fondés sur la propriété de l'arc-boutement.

Soit AB (fig. 75) une tige qui ne peut que glisser sulvant sa longueur. Une came C, mobile autour du point O, est constamment pressée contre AB par l'action d'un ressort DE dont l'extrémité E est fixe. Si l'on cherche à faire glisser AB dans le sens de la flèche, la came ne s'y opposera pas ou du moins ne fera que développer en F un frottement qu'il sera facile de vaincre. Mais si l'on veut donner à AB un mouvement en sens contraire, la came empêchera ce mouvement de se produire. S'il y avait glissement de AB sur la came dans ce nouveau sens. la came éprouverait en F une action totale dirigée sulvant une ligne FH faisant avec la normale FG un angle égal à l'angle de frouement. Mais le point O est choisi de manière à se trouver à l'intérieur de l'angle GFH : la came ne pourrait donc pas rester immobile sous l'action de la force dirigée suivant FH, puisque cette force et le ressort DE tendraient l'un et l'autre à la faire tourner dans le même sens autour du point O.

Cet encliquelage peut être appliqué à un mouvement de retation. AB est remplacé par un anneau circulaire à l'intérieur duquel agissent plusieurs cames telles que C, disposées régulièrement au centre de cet anneau. C'est l'encliquetage Dobo

(voir Cinématique, p. 292 et fig. 228 bis).

§ VIII. — RESISTANCE AU HOULEMENT.

Lorsqu'an cylindre pesant roule uniformément sur une surface plane et horizontale, les deux corps éprouvent, dans le voisinage du point de contact, des déformations plus ou moins permanentes. De là un travail résistant dû aux actions moléculaires qui se développent entre les deux corps, et par conséquent il faut une force exerçant un certain travail moteur pour entretenir le mouvement uniforme du rouleau. De même, pour rompre l'équilibre supposé établi, il faut une force dont le moment, par rapport à l'arête de contact, axe instantané de la rotation qui doit se produire, soit précisément égal au moment des actions mutuelles dont le siège est, eu égard à la déformation, en dehors de cette arête géométrique. Ces actions portent le nom de résistance au roulement. Cette résistance est généralement très-faible; cependant il est utile de connaître les lois qui la régissent, pour savoir quelle est son influence dans chacun des cas où elle se trouve mise en jeu (*), et de s'assurer si cette influence est négligeable. Coulomb a le premier déterminé expérimentalement les lois de la résistance au roulement.

Considérons (fig. 76) deux madriers horizontaux séparés par un intervalle vide. Sur ces madriers se trouve posé un rouleau en bois de gaîne de rayon $\mathrm{CA} = r$. Pour produire sur ce rouleau une pression variable, on faisait passer sur lui une ficelle aux deux extrémités de laquelle étaient suspendus deux poids égaux à la moitié de la charge Q qu'on voulait donner au rouleau. Cela fait, pour déterminer le mouvement dans un certain sens, on ajoutait d'un côté une surcharge q, et l'on observait quelle était dans chaque cas la force q ou plutôt le moment qr nécessaire pour que le mouvement fût sur le point de se produire, ou pour qu'un mouvement très-lent persistât uniformément une fois imprimé.

Considérons l'équilibre sur le point d'être rompu : il est clair que la réaction totale de l'appui est une force verticale et égale à Q+q. Donc le mouvement qui tend à se produire ne saurait être un glissement, quelle que soit l'intensité de la force q, bien que rien, dans les conditions géométriques de la question, ne s'oppose à ce que le mouvement soit plutôt un glissement qu'un roulement. Mais nous savons que le premier n'existe que si la réaction de l'appui est inclinée d'un certain angle φ sur la normale. Ici, au contraire, la réaction Q+q de l'appui est verticale; seulement, comme cette réaction doit avoir pour l'équilibre un moment égal et de signe contraire au

moment qr de la force additionnelle, elle doit s'écarter du point de contact A, dans le sens du mouvement, d'une distance à déterminée par l'équation

$$qr = \delta(Q + q)$$
.

Coulomb a constaté que le rapport $\frac{q}{Q+q}$ du poids additionnel à la réaction normale ou pression est constant pour un même rayon r et pour les mêmes substances en contact.

Il a cru reconnaître en outre que quand le rayon r varie, le rapport $\frac{q}{Q+q}$ varie en raison inverse de ce rayon r, de sorte que le rapport du moment moteur à la pression, $\frac{qr}{Q+q}$, c'està-dire la distance δ , est, d'après l'équation précédente, une longueur constante, quel que soit le rayon r.

Cette loi, comme celles du frottement, a été trouvée par Coulomb dans les limites de la pratique; il serait absurde de vouloir l'appliquer en dehors de ces limites, car la longueur AA' ou à doit toujours être beaucoup plus petite que r. M. Morin, par de nouvelles expériences, a vérifié que cette loi est trèssuffisamment approchée dans les cas ordinaires.

La longueur 3, dans les expériences de Coulomb relatives à un cylindre de bois de galac de o",162 de diamètre roulant sur des règles en chêne, a été trouvée égale à o",00048.

Cas d'une réaction inclinée. — On peut eucore produire le roulement d'une autre manière. Le cylindre supportant toujours une force Q, on peut lui appliquer une force horizontale q (fig. 77). Voyons quelles sont les conditions pour que le roulement soit sur le point de mattre.

La réaction du corps, R, qui doit toujours être égale et opposée à la résultante de Q et de q, doit être ici oblique; elle passe par un point A' situé en avant de A et se décompose en deux, l'une verticale et égale à Q, l'autre horizontale, égale à q et dirigée en sens inverse du mouvement. L'expérience a prouvé que le moment qh de la force parallèle au plan par rapport à A ou à A' a la même valeur que le moment qr dans le cas précédent, les pressions, dans les deux cas, étant, bien entendu, supposées égales.

^(*) Toutes les fois que l'on aura dans une machine doux surfaces (dont l'une au mains doit être mobile) assajaitées à être constamment en contact l'une avec l'autre, et en outre à remplir certaines conditions qui résultent du leur linison géométrique avec d'outres pièces fixes ou mobiles, il faudra commencer par étudier piométriquement la nature du mouvement relatif de l'un des deux corps par rapport à l'autre. La promètre question qui se trouve posée est donc roujours une question de Cinématique : c'est cette science qui nous apprender si le monvement relatif est un roulement, un glissement, un mouvement mixte composé des deux. Quelquefeis il arrivera que l'un ou l'autre effet sera possible imilifigramment au poiet de vue géométrique; alors la Dynamique fera connaître qual est le mouvement effectif.

Or, si nous remplaçons la réaction R par ses composantes, il faudra pour l'équilibre que le moment $Q \delta$ soit égal à qh; de sorte que la distance δ du point A' au point A est la même que dans le cas déjà étudié. Cette quantité δ étant connue, nous aurons pour l'équation de l'équilibre

$$Q\delta = qh$$

d'où

$$q = Q \frac{\delta}{\hbar}$$

Mais, dans le cas actuel, il peut y avoir glissement ou roulement, puisque la réaction de l'appui est inclinée sur la normale; le premier cas se produira quand cette inclinaison sem égale à l'angle de frottement.

Il y aurait donc glissement si la force $q=Q\frac{\tilde{q}}{h}$, nécessaire au roulement, était plus forte que la force fQ, c'est-à-dire si l'on avait

$$\frac{\partial}{h} > f$$
, $h < \frac{\partial}{f}$.

En résumé, toutes les fois qu'un corps roule sur un autre, la réaction totale de l'appui passe un peu en avant de l'arête de contact géométrique, toujours dans le sens du mouvement.

La distance o du point d'application de cette réaction au point de contact ne dépend nullement de la direction de cette réaction qui peut être normale ou inclinée.

Dans ce dernier cas, l'appui exerce une réaction tangentielle qui peut être quelconque, pourvu qu'elle soit inférieure à celle qui correspond au glissement sur le point de naître.

Usage des rouleaux pour le transport horizontal des fardeaux.

Quand on veut transporter horizontalement un madrier très-lourd, ou une pierre de taille, il est presque impossible de les faire glisser sur un sol rugueux dont le coefficient de frottement est considérable. On remplace le glissement par le roulement, le frottement par la résistance au roulement, qui est beaucoup plus faible. Pour cela, on dispose parallèlement sur le sol deux rouleaux de même rayon r(fig. 78), et l'on place dessus le madrier qu'il faut transporter; puis on applique à ce madrier une force de traction Q pour le faire avancer. On demande quelle doit être la valeur de cette force pour que le mouvement soit sur le point de naître, connaissant le poids P du madrier.

Comme dans toutes les questions de ce genre, il faut d'abord étudier comment se fera le mouvement au point de vue géométrique.

Les rouleaux auront un mouvement instantané de rotation autour de leur arête de contact. A pour l'un, A, pour l'autre. Le madrier à son tour roulera sur ces rouleaux dont le mouvement relatif par rapport au madrier sera également une rotation instantanée autour du point B dans le sens de la flèche b (*).

Cherchons maintenant les conditions d'équilibre sur le point d'être rompu. Prenons l'un des rouleaux. Il roule à la fois sur le plan et sur le madrier; et, si nous négligeons son poids, les seules forces qui lui sont appliquées sont les réactions des corps en contact.

D'après la théoric du roulement des solides naturels, la réaction totale du point d'appui passe en un point A' situé en avant du point A, et elle se compose en général d'une réaction normale N et d'une réaction tangentielle F (**) dirigée en sens inverse du mouvement.

^(*) D'après cela, on reconnait d'abord que la vitesse du madrier sera double de cello des centres des rouleaux. En effet, puisque le mouvement du premier reuleau ast un mouvement instantané de rotation autour du point A, les vitesses du ses différents points sont entre elles comme laurs distances au point A; donc, la vitesse du point B est double de la vitesse du point O, et, d'un autre soté, la vitesse du point B est la même que celle du point du madrier qui coîncide avec lui pour qu'il n'y sit pas glissement.

Il résulte de la que la corps P, s'ayançant deux fois plus vite que les ronleaux, fluira par les quitter, de serte qu'il en fant un troisième qu'on apporte à la partie autérieure du corps P, un peu avant que celui de derrière sa tronve dégage.

^{(&}quot;") On sait que evito derniéra réaction est unile dans certains ens; son existence n'est donc paint and conséquence nécessaire du roulement. Dans tous les cas, il est bien évident qu'on sera toujours averti de zon absence, purce qu'on trouvera sa valour épale à zéro.

CHAPITRE II. - DES RÉSISTANCES PASSIVES.

195

A la partie supérieure, il y a mouvement relatif du rouleau sur le madrier, et il est bien clair que ce mouvement a lieu en sens inverse du premier. Donc, la réaction sera inclinée, passera par un second point B' situé à une certaine distance d' en arrière de B, et elle pourra se décomposer en deux, l'une normale, l'autre tangentielle. La quantité d' sera généralement différente de d parce que les substances en contact ne sont pas les mêmes dans les deux cas.

Cela posé, pour l'équilibre de ce rouleau, il faut d'abord que les réactions normales soient égales en bas et en haut; il doit en être de même des réactions tangentielles. Prenons de plus les moments des quatre forces autour du point B, et nous aurons

$$\mathbf{F} \times \mathbf{a} r = \mathbf{N}(\hat{n} + \hat{\sigma}')$$
.

et, pour l'autre rouleau,

$$F_i \times ar = N_i(\delta + \delta')$$
.

Écrivons maintenant les équations qui résultent de l'équilibre du madrier.

Il est soumis à des forces égales et opposées aux réactions N, N, et F, F,, qu'il exerce sur les rouleaux; on auradonc, pour l'équilibre de ce corps solide,

$$F + F = Q$$
, $N + N = P$.

En ajoutant les premières équations membre à membre, et ayant égard à ces dernières, nous aurons

$$Q \times ar = (\delta + \delta')P$$

d'où

$$Q = \frac{\delta + \delta'}{2r} P$$

Comme application numérique, faisons

$$\delta = a^{m}, a_{1}, \ \delta' = a, a_{1}, \ r = a_{1},$$

on oura

$$Q = 6,655P$$
.

Ainsi, la résistance est considérablement réduite .

On emploie toujours ces rouleaux pour transporter horizontalement une pierre de taille arrivée au sommet du tas, c'està-dire à la partie supérieure d'un mur en construction. On a des appareils fixes qui servent à l'élever sur le tas en un point donné, puis, par des rouleaux, on la conduit à la place qu'elle doit occuper. Ces rouleaux n'ont pas la forme cylindrique; ils sont généralement fusoïdes ou renflés au milieu (fig. 79), afin qu'on puisse facilement changer quelque peu leur direction, soit que leur axe n'ait pas été à l'origine exactement perpendiculaire aux faces du mur, soit que celui-ci se compose de parties faisant un angle très-obtus.

Galets.

Les galets ne rendent pas le même service que les rouleaux; ils n'ont pas pour effet de supprimer complétement le frottement; seulement ils diminuent le travail inutilement consommé.

Considérons, par exemple, le tourillon à roulettes comme celui qui est employé dans la machine d'Atwood; ce tourillon porte sur les jantes croisées de deux galets, mobiles euxmêmes sur leurs propres tourillons (fig. 80).

Le frottement est complétement remplacé sur le tourillon principal par un roulement dont l'effet nuisible est négligeable. Mais il y a ailleurs des parties fixes dans le système; le frottement n'est donc pas détruit; il ne fait que changer de place, car il se produit maintenant entre les tourillons des galets et leurs coussinets. L'avantage qu'on trouve dans cette position, c'est que le travail du frottement est considérablement réduit.

En effet, si le tourillon avait porté sur un coussinet fixe, le travail pour un tour de la roue aurait été égal au frottement multiplié par la circonférence de ce tourillon, tandis qu'avec cette disposition, pendant que le tourillon fait un tour, le galet ne fait qu'une fraction de tour, de sorte que le travail du frottement, qui est égal au produit de ce frottement par une fraction égale de la circonférence du tourillon des galets, est beaucoup plus petit que dans le premier cas.

Mais, à côté de cet avantage, nous pourrions signaler dans

certains cas un grand nombre d'inconvénients pratiques dont nous avons déjà dit quelques mots nilleurs. Par exemple, quand on se sert de galets pour guider une tige en ligne droite (fig. 8i), il arrive de deux choses l'une : ou bien la tige tend à dévier dans le sens A, ou bien dans le sens B. Dans le premier cas, le mouvement ayant lieu dans le sens de la flèche F, le galet tournera dans le sens de la flèche a; dans le second, le galet tournera dans le sens de la flèche b. Il y a un moment d'arrêt quand le sens du mouvement change; un glissement se produit alors, d'où il résulte qu'il se forme dans le galet des méplats qui empêchent bientôt le galet de rouler. On retombe ninsi dans l'inconvénient qu'on avait voulu éviter.

§ IX. - FROTTEMENT MIXTE DES ENGRENAGES.

Nous avons encore à étudier le cas mixte où deux corps roulent et glissent en même temps l'un sur l'autre, comme cela se présente pour les engrenages (*).

Accidentellement, tontes ces vitesses penyant être milles, c'est-à-dire le monvement impossible, ca qui n'est millement en contradiction avec les fuis primord ales de la Cinematicue. Dans ce cas, on néglige généralement la résistance due au roulement, parce que les dents sont assez dures et assez bien polles par le frottement même, pour que cette résistance soit tout à fait négligeable, surtout en présence du frottement, qui est beaucoup plus considérable.

Nous supposerons que le contact commence un pas avant la ligne des centres, et finisse un pas après, ce qui conduit à avoir constamment deux paires de dents en contact. Soit T (fig. 82) le point de contact de deux dents sur la ligne des centres: quand les roues auront tourné chacune de l'angle correspondant à un pas, le point de contact T aura parcouru sur chaque circonférence primitive des espaces TM' et TM. L'arc de glissement est égal à MM'. Le mouvement relatif de la roue C' par rapport à C comprend un glissement MM' et un roulement de M' en T'; nous négligerons le travail nuisible résultant de ce roulement.

Supposons le pas a très-petit; alors M'M sera sensiblement égal à sa projection sur la ligne des centres, c'est-à-dire à LL'. On

$$LL' = TL + TL' = \frac{a^3}{2r} + \frac{a^3}{2r'} = \frac{a^3}{2} \left(\frac{1}{r} + \frac{1}{r'} \right) \cdot a \int_{T'}^{T'} \frac{a^3}{C^3}$$

Si l'on désigne pur N la valeur moyenne (*), pendant le par-

Pour que la rome C soit en équilibre, un négligeant le frottement, il faut qu'on sit

$$PR = Nr$$
, d'où $N = \frac{PR}{r}$

It et r désignant les brus du levier des forces P et N par rapport au centre C_1 or, il n'y a que dans l'engrenage à développantes que r soit constant; donc il n'y a que dans cet engrenage que la pression normale N soit constante, du moios quand on néglige le frottoment.

Pour les autres, elle est variable; c'est la valeur moyenne de cette quantité qu'en fait entrer dans l'expression du travait du frottement.

^(*) Rappelons-nous d'abord la question sinématique de la transmission du mouvement. Nous avons transé qu'au moyen des engrenages la mouvement de l'une des rouss se transmet uniformément à l'autre. Or, cela a été démontré géométriquement, indépendamment de la nature des rouss, des frottements, etc. Donc cela sara toujoure lieu, quels que soient les frattements qui se manifesteut et la grandeur des efforts mis en jeu; les résistances passives n'ont donc aueun offet sur la transmission du mansement proprement dit; alles ne font qu'augmentes le travail qu'il faut dépenser pour entretonir le meuvement mid-pendance parfaite des deux paints de vue différents auxquels en paut se placer pour étudier les mechines :

¹º Considérées comme organes de transmission de monvement, elles se comportent comme des figures géométriques et sont amquement soumises aux lois de la Géométrie. Catte première partia détermine les vitesses de tous les divers points un fonction de celle d'un soul pris à volenté.

²º Considérées comme transmottant l'action des forces d'un point et d'une direction a un autre point et à une pulre direction, les machines sont regies par le théorème de tenyall : ce théorème, comme nous l'avons vu, donne en fonctio : du travail disponible à chaque instant les leis de la vitesse du point régulateur, et par conséquent celles de tous les autres.

^(*) Le pression N n'est pas constante en général; elle ne le acrait rigonrousement que dans le cas de l'engranage à développantes, et encore si l'on négligeait le frottement.

Supposons en effet un engrenage quelconque (fig. 83). Soit P la puissance appliquée à l'une des roues, Q la résistance appliquée à l'autre, et soit AB la ligue seivant laquelle s'exerce la pression N à un certain moment, c'est-à-dire la normale aux surfaces de deux dants en contact, normale qui passe toujours mi point de contact T des circonférences primitives sur la ligne des centres.

DEUXIÈME SECTION. - DES MAGILINES EX MOUVEMENT.

cours d'un pas, de la somme des composantes normales des actions mutuelles des deux paires de dents en contact, le frottement sera égal à fN, et le travail du frottement pendant ce parcours sera égal au produit de fN par l'arc de glissement; donc le travail du frottement pour le parcours d'un pas est égal à

 $\frac{a^{\dagger}}{3}\left(\frac{1}{r}+\frac{1}{r'}\right)fN$

Admettant cette valeur approximative, représentens par T le travail moteur, par T' le travail résistant utile, ces quantités de travail étant prises pour un parcours de K fois le pas, on aura

(1)
$$T = T' + \frac{K}{2} f N a' \left(\frac{t}{r} + \frac{t}{r'} \right).$$

Pour éliminer N. il faut considérer l'une des roues seule; on remarquera que, le pas étant toujours supposé assez petit, on peut remplacer, avec une approximation suffisante, l'équation de l'équilibre de la roue menée, par la formule

$$T' = KNa$$
,

formule qui serait rigoureusement exacte si la normale commone aux profils des dents en prises était constamment normale à la ligne des centres. On le peut d'autant plus que la quantité KN se trouve dans l'équation (1) multipliée par f, qui est très-petit; on ne commettra donc qu'une erreur très-faible en remplaçant KNa par T'; donc nous pourrons écrire avec une exactitude suffisante cette formule donnée pour la première fois par le Général Poncelet :

(a)
$$T = T' \left[1 + \frac{1}{2} fa \left(\frac{1}{r} + \frac{i}{r^{t}} \right) \right].$$

On voit, par cette formule, qu'on a intérêt à diminuer le pas autant que possible; mais cette diminution a nécessairement une limite, parce qu'on arrive bientôt à des dents trop minces pour résister aux efforts qu'elles ont à subir.

Si l'engrenage est cylindrique, on peut introduire dans la

CHAPITEE II. - DES RÉSISTANCES PASSIVES. 199 formule précédente les nombres de dents des roues. En effet,

$$na = 2\pi r,$$

$$n'a = 2\pi r';$$
donc

(3)

 $T = T' \left[1 + f\pi \left(\frac{1}{n} + \frac{1}{n'} \right) \right]$ $f = 0, 10, \quad n = 20, \quad n' = 0$ 12. All 1 Exemple :

 $f\pi\left(\frac{1}{n} + \frac{1}{n!}\right) = 0,024 = \frac{1}{42}$

Dans le cas des engrenages coniques (fig. 84), la formule (2) pourra servir, pourvu qu'on ait soin d'y remplacer r et r' par les longueurs TO, TO' des génératrices des deux cônes qu'on développe, afin d'avoir les circonférences primitives qui seryent au tracé des profils. Cela résulte immédiatement de ce que nous avons dit sur ces engrenages. En effet, les courbes des dents se touchent pendant une courte durée, comme si elles restalent dans le plan 00' perpendiculaire à AT. Ces engrenages sont plus doux que les engreuages cylindriques d'un même nombre de dents.

Ces formules ont été établies en supposant l'arc d'approche el l'arc de retraite égaux tous deux à un pas. Il n'y aurait rien à changer si le contact n'avait lieu que d'un côté de la ligne des centres, dans l'étendue d'un pas, soit avent, soit après le passage au point T. En effet, il n'y a plus alors à la fois que deux dents en prise; la pression N s'exerce entre les deux dents, au lieu de se partager entre les deux paires de dents, comme dans le cas que nous venons d'étudier, de sorte que le frottement n'est pas changé (*).

An contraire, s'il n'était pas indispensable de proscrire d'une manière absolue la transmission opérée par le simple contact d'une paire de dents, on pourrait diminuer de moitié le travail

^(*) Nous avons dit que la dornière disposition sernit extrêmement défectuouse en pratique, parce qu'elle exposerall à des choes par suite des moindres irrègularités dans la figure des donts.

du frottement en faisant commencer, par exemple, le contact $\frac{1}{2}$ pas avant et finir $\frac{1}{2}$ pas après la ligne des centres.

Dans les formules que nous avons établies jusqu'ici, l'influence du frottement est la même avant la ligne des centres et après. Ce résultat est contraire à toutes les indications de la pratique, qui montrent que le frottement avant le passage à la ligne des centres est beaucoup plus nuisible que le frottement après, et qu'il peut même produire des arcs-boutements et empêcher toute espèce de mouvement.

Mais il ne faut pas oublier que nous avons supposé le pas très-petit, et alors nos résultats peuvent être considérés comme suffisamment exacts. Il n'en serait plus de même si le contact avait lieu à une assez grande distance de la ligne des centres, en un point tel que M, par exemple (fig. 85). (La figure est faite dans le cas particulier d'un engrenage à flancs et épicycloïdes.)

Solent C et C' les centres des deux circonférences primitives qui tournent dans le sens indiqué par les flèches. Soient Q et P les forces qui agissent sur ces roues, Q étant la puissance et P la résistance, Avec ces hypothèses, le contact a lieu après la ligne des centres.

Cherchons les conditions de l'équilibre. La roue C'est en équilibre sous l'influence de la force P, de la réaction normale N'et d'une réaction tangentielle f'N' dirigée de M en A, dans le sens du mouvement relatif. L'équation d'équilibre sera, en prenant les moments pur rapport au point C',

$$Pr' = N'x'$$

x' désignant le bras de levier de la réaction N et r' le rayon de la roue C'; le bras de levier du frottement est nul.

Écrivons maintenant les conditions d'équilibre de la roue C. Elle est en équilibre sous l'influence de la force Q, et des réactions N et fN égales et directement opposées aux réactions N' et fN'. Soit x le bras du levier de la force N, y le bras de levier de fN; nous aurons, en prenant les moments par rapport au point C,

$$Qr - Nx - fNy = a$$

CHAPITAR II. — DES RÉSISTANCES PASSIVES. Éliminous N'entre ces deux équations, et nous aurons

$$Qr = (x + fr) \frac{\mathbf{p} \, r'}{x'}.$$

Or, on a, en vertu des triangles semblables CTE, C'TM,

$$\frac{x}{x'} = \frac{r}{r'};$$

done

$$Qr = Pr + P \frac{fyr}{x}$$

ou

$$\frac{Q}{P} = \iota + \frac{f_{Y}}{x}$$

On peut encore donner une autre forme à cotte expression en introduisant la longueur CD = s de la perpendiculaire à la ligne des centres comprise entre le point C et la ligne C'M prolongée. En effet, les triangles CDA, CTE sont semblables et donnent

$$\frac{y}{x} = \frac{z}{r}$$

done enfin

$$\frac{\mathbf{Q}}{\mathbf{P}} = \mathbf{r} + \frac{fz}{r},$$

de sorte que la fraction du travail moteur absorbée par le frottement est

$$\frac{fz}{r}$$

Faisons maintenant la supposition inverse. Si P est la puissance et Q la résistance, le mouvement est sur le point de maître dans le sens opposé au précédent, et le contact a lieu avant la ligne des centres. Dans ce nouveau cas, les formules se déduisent des précédentes en changeant simplement le signe de f. On aura donc

$$\frac{Q}{P} = 1 - \frac{fz}{r},$$

202 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT. et si l'on veut avoir le rapport de la puissance à la résistance,

$$\frac{P}{Q} = \frac{1}{1 - \frac{fz}{r}}$$

Cette quantité, de même que la précédente, est plus grande que l'unité; mais elle peut devenir beaucoup plus grande si la quantité z augmente suffisamment. En effet, on voit que si l'on a $\frac{fz}{r} = z$, la puissance P est infinie, c'est-à-dire que le mouvement n'est pas possible (*): c'est un nouvel exemple de ce que l'on appelle arc-boutement.

Cette condition conduità l'arc-boutement, lors même que les dents sont parfaitement exécutées. Il y a d'autres cas d'arc-boutement qui doivent contribuer encore à faire proscrire de plus en plus les contacts commençant à une trop grande distance en arrière de la ligne des centres. Ils tiennent à certains défauts de construction des engrenages, lorsque, par exemple, dans un flanc de la roue menante se présentent de petites cavités où peut s'engager l'extrémité de la dent de la roue conduite (fig. 86). Ces irrégularités ne gênent pas le mouvement dans un sens; elles l'empèchent dans le sens inverse.

§ X. - FROTTEMENT DANS LA VIS BANS PIN.

Avant d'étudier cette question, qui vient naturellement après la recherche du frottement dans les engrenages, com-

tang
$$\varphi = \frac{r}{r} = \tan \theta$$
 CDT.

Or, les triangles CEN, CDT sont sumblables; donc l'angla

Done la réaction metrice pour la roue C passe par le centre de cette roue, et ne peut per conséquent déterminer augus mouvement.

mençons par rappeler quelques notions sur lesquelles nous avons déjà beaucoup insisté en Cinématique.

Prenons trois axes rectangulaires (fig. 87), et faisant deux projections réctangulaires, supposons que 0 y soit l'axe de la vis sans fin, et que l'axe de la roue soit situé au-dessus paral-lèlement à 0 x. Soit 0 y le sens dans lequel en doit porter l'axe de la vis dont la rotation, par conséquent, a lieu dans le sens de la flèche (a) de z vers x. Cherchons dans quel sens nous devons porter l'axe de rotation de la roue. Il y a deux cas à distinguer, selon que le sens de la vis est dextrorsum ou sinistrorsum. Supposons le premier cas, c'est-à-dire supposons que l'hélice de la vis soit tracée comme le montre la figure, la dent de la roue en contact avec cette hélice vient en avant du plan $z \cdot 0$ x; donc, la rotation de la roue se fait dans le sens de la flèche (b) de y vers z; l'axe de la rotation doit donc être compté dans le sens CA.

Si la vis était sinistromum, ce serait l'inverse qui aurait lieu. Désignons par n le nombre des dents de la roue, et par \omega sa vitesse angulaire; no sera la vitesse angulaire de la vis sans fin. Appelons a la distance CO.

Pour avoir le frottement de la roue sur la vis, il faut chercher son mouvement relatif. Pour cela, d'après les règles établies, il faut composer le mouvement de la roue avec un mouvement égal et contraire à celui de la vis, c'est-à-dire une rotation dirigée suivant Cx, (fig. 88) avec une rotation $n\omega$, dirigée suivant OA, en sens inverse de Oy. Pour cela, nous appliquons au point C deux rotations CA, CA', de sens contraires et égales toutes deux à $n\omega$. Nous avons alors au point C trois rotations; mais l'une d'elles forme avec celle qui est sur le prolongement de Oy un couple de rotation équivalent à une translation $OC \times n\omega$ ou $n\omega\omega$ perpendiculaire au plan du couple, c'est-à-dire parallèle à Ox et dirigée en sens contraire, le moment du couple étant négatif. Soit CB la vitesse de ce mouvement de translation. Les deux autres rotations appliquées ou point C se composent en une seule égale à

$$\omega \sqrt{n^2+1}$$
.

Nous avons maintenant une rotation autour de CD et une translation dont la vitesse est CB. Nous pouvons décomposer

^(*) Il est facile de démontrer que la condition précédente répond au cas où la résolien résultante des forces N et fN (cette dornière ayant maintenant une direction opposée à celle que suppose la figure) passerait par le centre. En effet, cette condition deune

204 DEUXIÈME SECTION. — DES MAGBINES EN MOUVEMENT. cette translation en deux dirigées, l'une suivant CF, prolongement de CD, l'autre suivant une perpendiculaire CE à CD. On a, d'après les triangles semblables,

$$CF = \frac{na\omega}{\sqrt{t + n^2}},$$

$$CE = \frac{n^2a\omega}{\sqrt{t + n^2}}.$$

Or on peut, en transportant l'axe CD parallèlement à luimême en C, D., faire naître un couple de rotations (CD, C, D,) qui détruise précisément cette translation CE.

On aura ainsi l'axe de rotation glissant qui représentera à la fois une rotation $\omega \sqrt{t+n^2}$, et une translation inverse

$$\frac{naw}{\sqrt{1+n^2}}$$
.

On sait que la position du point C, est déterminée par les équations suivantes que l'on retrouve aisément lei :

$$\frac{CC_1}{CC_2} = n^2$$

d'où

$$OC_i = \frac{a}{1+n^2}, \quad CC_i = \frac{n^2a}{1+n^2}.$$

Si l'on prenait OC, pour rayon de la circonférence primitive, la direction de C,D, serait précisément celle de la tangente à l'hélice de la vis sans fin, car on a

$$h = \frac{2\pi R}{n},$$

It étant le rayon de la roue, d'où, si $R = n^2 r$.

$$\frac{h}{2\pi r} = n = \operatorname{tang} DC x'.$$

De la sorte, le mouvement relatif se composerait simplement d'un glissement (mouvement de rosion) de la dent de la roue sur le plan incliné de la vis, et d'un roulement autour d'un axe situé dans le plan tangent aux surfaces en contact, roulement dont l'influence nuisible serait négligeable. Quant à la translation, elle aurait en ce point sa grandeur minima, comme on l'a vu en Cinématique.

Malheureusement, cette disposition est peu pratique, car si n=20, par exemple, le rayon de la vis se trouve réduit à $\frac{1}{40^{\circ}}$ de la distance des deux axes. Il faut augmenter ce rayon. Alors, si nous transportons l'axe C_iD_i au point de contact des cylindres primitifs, cet axe se trouve oblique par rapport au plan tangent commun, et donne lieu à deux rotations, l'une qui se réduit à un simple roulement autour d'un axe situé dans le plan tangent, l'autre qui a lieu autour d'un axe perpendiculaire et qui produit un frottement analogue à celui d'un pivot sur sa crapaudine.

Nous négligerons le frottement qui résulte de cette rotation et nous assimilerons le mouvement à une translation sur un plan incliné, dont l'inclinaison i est celle de l'hélice moyenne.

Cela posé, remplaçons les couples qui sollicitent les deux arbres par des couples équivalents dont les brus de levier respectifs soient les rayons R et r des circonférences primitives. Soit Pr le couple appliqué à la vis, QR celui qui agit sur la roue; nous pouvons supposer que l'une des forces de chaque couple rencontre l'axe correspondant, les deux autres étant appliquées au point de contact des deux corps. La vis étant conductrice, P est la puissance, Q la résistance; le problème est le même que celui de l'équilibre du plan incliné, bien qu'ici les deux corps considérés soient tous les deux mobiles (fig. 89). Au moment où la roue est sur le point de cèder à la pression de la vis, la réaction K de celle-ci est inclinée à gauche de la normale, et on a pour l'équilibre de la roue

$$Q = K \cos(i + \varphi)$$

Pour l'équilibre de la vis, il faut considérer la réaction Kuégale et opposée à K, et l'on a

$$P = K \sin(i + \varphi)$$

d'où

$$P = Q \tan g(i + \varphi)$$
.

Si la roue conduisait la vis, on devrait changer le signe de l'angle φ , et l'on aurait pour la puissance Q (P étant maintenant la résistance)

 $Q = P \cot(i - \varphi)$.

Pour que l'engrenage soit réciproque, il faut qu'on ait à la fois

$$i < 90^{\circ} - \varphi$$
, $i > \varphi$,

ou

$$tang i < \frac{1}{f},$$

$$tang i > f.$$

Les équations précédentes conviennent également au cas du mouvement uniforme.

Imprimons un déplacement virtuel infiniment petit à la vis, et soit ds l'arc dont la dent de la vis glisse sur la dent de la roue; cet arc, projeté sur les directions des forces $\hat{\mathbf{P}}$ et $\hat{\mathbf{Q}}$, aura pour composantes ds $\cos i$, ds $\sin i$, et par suite les produits $\mathbf{P} ds$ $\cos i$, $\mathbf{P} ds$ $\sin i$, représentent les travaux élémentaires de la force mouvante \mathbf{P} et de la force résistante $\hat{\mathbf{Q}}$.

Multipliant l'équation

$$P = Q \operatorname{ung}(i + \varphi)$$

par ds cosi, il vient

$$P ds \cos i = Q ds \cos i \tan g(i + \varphi)$$

= $Q ds \sin i \times \tan g(i + \varphi) \cot i$,

ou bien

$$T_w = T_e \tan (i + \varphi) \cot i$$

équation qui convient au cas où la vis conduit la roue.

Si c'est la roue qui conduit la vis, on partira de l'équation

$$Q = P \cot(i - \varphi),$$

et on trouvera entre le travail moteur et le travail résistant la relation

$$T_{ai} = T_{cot}(i - \varphi) \tan \theta i$$

qui n'est autre chose que la précédente, dans laquelle on aurait changé \bar{i} en $90^o - i$.

Le travail du frottement, dans la vis sans fin, est toujours considérable (*); aussi cet organe est-il surtout employé pour transmettre de faibles quantités de travail, ou bien lorsque, dans une opération accidentelle, il n'importe pas de perdre du travail.

Remarquons enfin que l'obliquité de l'action mutuelle donne naissance sur chacun des deux arbres :

1º A une force longitudinale qui détermine des frottements sur les épaulements ou les pivots;

2º A un couple appliqué sur l'axe, c'est-à-dire à des efforts latéraux sur les coussinets, produisant à la fois une augmentation du frottement des tourillons et une tendance à l'arrachement ou au desserrage des boulons de scellement.

Dans l'engrenage de White, c'est au contraire le froitement de resien qui est supprimé, et le mouvement est encove beaucoup plus deux. Les conséquences relatives à l'obliquité de l'action mutuelle se retrouvent tout unières dans ce dernier système.

^(*) Les formules précédentes ne rendent peut-être pas parfaitement comple des frottaments énormes que la pratique signale dans la vis sans liu. La pivotement, que nous avons négligé, a certainement aussi sa part d'influence sur ce phénomène, ce qu'indique la grande douceur de l'augrenage hyperbeloide, lequel ne différe de celui-ci que par la suppression du pivotement.

CHAPITRE III. - DES CORDES ET COURROIES.

209

D étant le diamètre de la poulie, augmenté de celui de la corde.

Dans cette formule, A et B sont deux coefficients, indépendants des quantités Q et D, ainsi que de la vitesse du mouvement de la poulie, au moins quand les tensions sont un peu fortes. Ces coefficients varient avec la grosseur et la nature de la corde, blanche ou goudronnée, sa sécheresse ou son humidité, son état de vétusté.

Le tableau suivant, calculé par Navier, donne, pour certaines cordes expérimentées par Coulomb, les valeurs de A et de B qui conviennent quand on prend le kilogramme pour unité de force, et le mêtre pour unité linéaire. Les cordes étaient formées de trois torons ou cordes moins grosses, et les torons composés d'un certain nombre de brins nommés fils de caret.

CHAPITRE III.

DES CORDES ET COURROIES.

V. 2 . E.

Au point de vue qui nous occupe actuellement, il n'est plus possible de considérer les cordes et courroies comme absolument flexibles et inextensibles. Il importe aussi de se rendre compte du frottement qui se développe entre ces corps et les solides sur lesquels ils s'enroulent.

§ XI. - ROIDEUR DES CORDES.

Les cordes employées à transmettre des efforts un peu considérables présentent toujours une grande résistance à la flexion. Il suit de là que, si l'on considère une corde passant sur une poulie fixe, et le mouvement uniforme acquis ou sur le point de naître dans le sens de la puissance, la roideur de la corde est une nouvelle résistance passive, qui s'ajoute an frottement de l'essieu de la poulie sur ses appuis, une portion du travail de la puissance étant inutilement employée à praduire la déformation de la corde.

Il résulte encore de la roideur du câble que celui-ci ne passe pas brusquement de la forme rectiligne à une forme circulaire modelée sur la poulie (fig. 90), de sorte que le brus de levier de la résistance Q est un peu plus grand que la somme du rayon de la poulie et de la demi-épaisseur du câble.

D'après Coulomb, en faisant abstraction du frottement de l'essieu, l'excès de la puissance sur la résistance, qui représente la roideur de la corde, est une fonction linéaire de la résistance Q et peut se mettre sous la forme

$$P-Q=\frac{A+BQ}{D}$$
,

Tableau pour calculer la roideur de différentes cordes autour d'une poulie de 1 mètre de diamètre.

INDICATION NES COMBES.	DIAMÉTRIS.	roras par mátro de Insgraus,	de A. Rolderr constants,	do B. Resileur par kilagramma
Cordes blanches de 3e fils	m 0,020	k0 0,a83	60 0,222	kii 0,0097
a de 15 fila	The second second	0,145	0,064	0,0055
a do 6 film.	0,000	0,052	0,011	0,0004
Cordes pondronnées de lo fils.	6 - 90	0.333	0,350	0,0126
ν du 15 file.		0,163	0,106	0,0001
a dè 6 fils.	0,010	0,000	0,021	0,0026

Les expériences de Coulomb ne permettent pas de tenir compte de la diminution considérable qui se produit dans la roideur d'une corde, au bout d'un certain temps d'usage. La roideur constante doit être doublée, quand il s'agit d'une corde blanche imbibée d'eau. Cette même roideur augmente sensiblement, pour les cordes goudronnées, quand la température descend au-dessous de zéro.

Nous n'insisterons pas davantage sur ce sujet, qui appelle de nouvelles expériences, surtout au point de vue des cables en fer.

Les seuls conseils pratiques qu'on puisse donner consistent à recommander d'employer des poulies de grand diamètre, des câbles aussi minces qu'il est possible, eu égard à leur résistance; et enfin, au point de vue de la durée de la corde, d'éviter de la soumettre à des flexions successives en sens opposé.

§ XII. - FROTTEMENT DES CORDES ET COURROIES.

Nous avons dit que les transmissions de mouvement par courroies sans fin étaient fondées sur l'intensité considérable du frottement qui se développe quand une courroie glisse ou est sur le point de glisser sur un cylindre qu'elle enveloppe en partie (fig. 91).

Bien que les phénomènes du frottement des courroies diflèrent essentiellement de tous ceux que nous avons rencoutrés jusqu'ici, nous allons voir qu'ils sont des conséquences mathématiques des lois de Coulomb. N'oublions pas toutefois que les déductions d'une loi approximative sont d'autant moins certaines qu'elles sont plus éloignées.

Soit Q la force résistante, P la force mouvante, et supposons te mouvement sur le point de natire dans le sens de cette force.

Faisant abstraction de la roideur, considérons la corde comme composée d'éléments solides articulés glissant sur le cylindre.

Soit T la tension d'un des éléments de la courroie, cette tension, pour l'élément suivant, est devenue

$$T + dT$$
:

d'T est l'effort tangentiel qui détermine le glissement de la portion infiniment petite de courroie que nous considérons, malgré le frottement déterminé par la pression normale.

Or cette pression est la somme des composantes normales des tensions T et T + dT qui comprennent un angle égal à $d\tau$.

CHAPITRE III. - DES CORDES ET COURROIES.

21

angle de contingence du cylindre. En négligeant les infiniment petits du second ordre, on a pour la pression

$$2T\sin\frac{1}{2}d\tau = Td\tau,$$

et pour le frottement (*)

Donc, enfin, l'équation d'équilibre est

$$dT = fTd\tau$$
,

d'où, en intégrant,

$$\log n\delta p. T = f_T + C,$$

en appelant r la somme des angles de contingence, somme qui est égale à l'angle «, formé par les prolongements des deux cordons ou par les perpendiculaires à ces cordons.

L'intégrale générale peut s'écrire

$$T = \Lambda e^{f\alpha}$$

ou, en intégrant depuis la tension Q jusqu'à la tension P,

Si l'enroulement a lieu sur un cylindre, on pourra remplacer τ par le rapport $\frac{S}{r}$ de l'arc embrassé au rayon du cylindre, et l'on aura

$$P = Qe^{f\frac{S}{r}}$$

(*) Voici, d'après M. Morin, les valours du coefficient de frottement des courroies, lequel est indépendant de la largeur :

Sulvant le même auteur, on peut faire supporter sans inconvenient à une commois une tension de obli, as par millimètre carré de section.

Cette formule présente ceci de remarquable, c'est que le rapport de la puissance à la résistance, représenté par une fonction exponentielle de l'arc embrassé, augmente avec une très-grande rapidité pour de faibles variations de cet arc. On conclut de là qu'il faut une force énorme pour faire glisser une courrole sur un cylindre, pour peu qu'on fasse faire à la courroie deux ou trois tours sur le cylindre. Les applications de cette propriété des courroies sont nombreuses et importantes.

Des freins.

Quand on yout arrêter ou ralentir brusquement une machine, pour un mouif de sécurité par exemple, on emploie des appareils nommés freins, qui développent d'énergiques résistances passives et produisent l'effet voulu au prix d'une certaine perte de travail.

Le sabot des rouliers servait à retenir une voiture sur une pente trop rapide en substituant le glissement au roulement. Le même principe se retrouve dans le frein de Laignel appliqué aux chemins de fer. Mais le frein le plus habituel des wagons, ainsi que celul des voltures, se compose simplement d'un corps qui vient frotter contre la jante.

Les propriétés du frottement des corps flexibles servent de fondement aux freins les plus énergiques. En voici quelques exemples:

Un homme peut descendre sons danger d'une assez grande hauteur, par exemple en cas d'incendie, en se suspendant à une corde qu'il fait passer sur un cylindre de bois fixe et dont il tient à la main l'autre bout. Il est alors très-facile de modérer la descente ou de s'arrêter en un point quelconque.

Supposons en effet le mouvement sur le point de nature dans le sens descendant; soient T et / la tension des deux brins de la corde: comme la corde falt un demi-tour sur le cylindre, l'arc embrassé est égal à π et l'on a

$$T = te^{f\pi}$$
.

Le coefficient du frottement des cordes sur le bois étant

CHAPITER III. - DES CORDES ET COURROIES.

213

log nép. $\frac{T}{I} = 1,57$, $\frac{T}{I} = 4,80$.

d'où

0,50, on a

$$\frac{T}{7} = 4,80.$$

Or la somme T+1 est égale au poids P de l'homme suspendu à la corde; on a donc

L'effort / suffisant pour arrêter la desceme est donc environ 12 à 15 kilogrammes seulement. Pour s'élever par le même procédé, l'effort devrait être o,83 P. En remplacant le cylindre fixe par une poulie, ces deux efforts seraient sensiblement égaux à 0,50 P.

En quadruplant l'arc embrassé, c'est-à-dire en faisant faire deux tours à la corde, le rapport T serait élevé à la quatriéme puissance, soit à peu près

$$T = 530 t$$
.

On utilise cette propriété, ainsi que nous l'avons dit, pour élever des fardeaux au moyen d'un treuil (fig. 92). Au lieu d'arrêter la corde sur le cylindre du treuil, on obtient plus de sécurité en faisant simplement faire deux tours à cette corde; l'extrémité libre aboutit dans la main d'un enfant, et l'on voit qu'un effort de 2 kilogrammes suffit pour soutenir un poids de 1000 kilogrammes et plus. En mollissant la corde, on arrête quand on yeut l'ascension.

Les mêmes principes guident dans l'établissement des appareils destinés à arrêter un corps en mouvement en détruisant dans un temps assez court la force vive emmagasinée dans ce corps. Ce problème a une très-grande importance et se trouve aujourd'hui tout à fait à l'ordre du jour, à cause des nombreux accidents de chemins de fer, qui seraient évités pour la plupart si le mécanicien avait la faculté d'arrêter rapidement un train lancé à grande vitesse.

Mais il ne faut pas se faire d'illusions à cet égard. La force

DEUXIÈME SECTION. - DES MACHINES EN MOUVEMENT.

vive ne peut être détruite que par du travail développé, ce qui exige nécessairement un certain espace parcouru, plus ou moins grand suivant la force vive acquise et la grandeur de la résistance, espace qui ne pourra jamais être réduit au-dessous d'une certaine limite, quel que soit l'appareil employé.

Pour arrêter en peu de temps un bateau animé d'une vitesse assez faible, mais dont la masse, et par suite la force vive, est considérable, on emploie une corde attachée par l'une de ses extrémités au bateau, on fait faire à l'autre bout deux tours sur un cylindre de fonte fixé à cet effet sur le quai, et l'ou tient l'autre extrémité à la main. Un petit effort suffira pour faire équilibre à une grande tension exercée par le bateau. Etant donné cet effort t, on a pour la tension à laquelle il fait équilibre

T = efal.

T représente la force appliquée à la partie de la corde qui va du bateau au cylindre, c'est-à-dire l'elfort résistant appliqué su bateau. Le travail de cette force pour un déplacement du bateau égal à I sera Tl. Or, on connaît la force vive du bateau, donc on n'aura qu'à résoudre l'équation

$$Tl = \frac{1}{2}m\omega^2$$

et nous saurons quelle distance parcourra le bateau avant de s'arrêter sous l'influence de la tension T. On calculera d'ailleurs la tension que l'homme devra exercer à l'extrémité de la corde, de manière que la tension qui en résulte à l'autre extrémité ne soit pas assez forte pour la casser,

Freins des arbres tournants.

C'est encore sur le frottement des courroles et des cordes qu'est fondé l'usage des freins ordinaires appliqués aux arbres de rotation.

Un arbre tourne avec une certaine vitesse, très-grande souvent, et l'on veut arrêter cet arbre dans l'espace de temps le plus restreint possible. On emploie pour cela des appareils appelés freins.

Ils peuvent consister simplement, comme cela a lieu pour les freins ordinaires, en une mâchoire de bois qu'on appuie contre la roue. Il se développe un frottement proportionnel à la pression P qu'on exerce sur cette mâchoire. Le travail de ce frottement pour n demi-tours décrits par la roue sera

nf Pla.

R désignant le rayon de l'arbre ou de la roue auquel est appliqué le frein. Il suffira d'égaler ce travail à la demi-force vive de la machine pour savoir le nombre n de demi-tours que fera l'arbre avant de s'arrêter. Pour peu que la force vive de la machine soit considérable, ce nombre n sera très-grand parce que le coefficient f'est assez petit. Il a donc fallu trouver un autre procédé pour produire facilement des efforts énergiques.

On fixe sur l'arbre tournant une poulie d'un grand diamètre. afin de produire non-seulement l'effort résistant le plus grand possible, mais encore de rendre très-considérable le travail de cet effort.

Le frein se compose d'une lame flexible en fer qui embrasse à peu près les trois quarts de la circonférence (fig. 93). L'une des extrémités de cette lame est attachée à un point fixe 0; l'autre s'attache à un levier qui s'appuie au point O. En exercant au point B un effort Q, cet effort se transmet amplifié au point D et il presse la lame contre l'arbre tournant. Il se produit alors le frottement d'un arbre mobile sur une lame fixe, frottement qui est évidemment identique avec celul d'une lame mobile sur un cylindre fixe.

Supposons que l'arbre tourne dans le sens de la flèche; soit T la tension motrice, t la tension résistante; l'équilibre du levier BOD va nous permettre de calculer t. En effet, on a, en appelant a et h les brus de levier des forces Q et i,

où
$$t = \frac{aQ}{b} \cdot$$
 D'un autre côté, on s
$$T = e^{fu}t,$$

d'où

la force T-I agit comme force résistante pour s'opposer au mouvement de l'arbre (*). Si donc R désigne le bras de levier de cette force, son travail pour un nombre x de tours sera représenté par

$$2\pi (\mathbf{T} - t)\mathbf{R}x = (e^{fx} - t)\frac{a\mathbf{Q}}{b} \times 2\pi \mathbf{R}x;$$

en égalant cette quantité à la demi-force vive de l'arbre tournant, on déterminera le nombre & de tours que fera l'arbre jusqu'à son arrêt.

Prenons f = 0,20 (fer sur fonte sans enduit)

$$e^{f\alpha} = 2,56,$$

 $e^{f\alpha} - 1 = 1,56.$

Si l'arbre tournait en sens inverse, il faudrait permuter T et 1;

(*) Dans ce cas, nous regardons la force T — s comme force resistante, tandis que dans le cas du frein applique aux hateaux, la force T tout entière était regardée comme résistante. Il est facile de s'expliquer cette différence. En effet, l'effort qui s'oppose au mouvement de l'arbre est l'effort total développé par le frottement. Or, le frottement sur une surface d'« est égal à fTd», et

Douc, la force que produit le frestement a chaque point est dT; le moment de cette force est RdT; donc, le moment total du frottement sera

$$\int R dT = R(T - t).$$

Dans le cas du bateau, si nous le considérons sent, il est bien évident que la résistance qui lui est appliquée est T, et que le travail de cette force est T/.

Si nous voulons au contraire considérer l'ensemble du hatemi et du cardon, I' devient une force luiérieure dont le travail est nul si la corde ne s'allenge pas, et la somme des travaux résistants appliqués au système est :

19 D'une part, le travail total du frottement

o" De plus, le travail T/ développé par l'homme qui tire l'extrémité de la corde, ce qui feit en tout, pour le travail résistant,

C'est ce qu'on avait tronvé immédiatement en coveliférant le batesa seul, acou lui appliquant le théorème du travail. CHAPITRE III. — DES CONDES ET COURNOIES. 217 Ce serait la plus petite tension qui passerait au point fixe; on

$$T = \frac{aQ}{b} = e^{fa}t,$$

$$T - t = \frac{e^{fa} - t}{\sqrt{a}} \frac{aQ}{b},$$

et le coefficient numérique

$$e^{fx} - 1 = 1,56$$

serait remplacé par

aurait

$$\frac{e^{f\alpha}-1}{e^{f\alpha}}=0.61.$$

La première disposition est donc préférable; mais le plus souvent les freins doivent servir à arrêter le mouvement communiqué à un arbre, tantôt dans un sens, tantôt dans l'autre, en sorte que le plus avantageux est d'employer un frein dont les deux extrémités soient fixées à l'extrémité de deux leviers égaux; il faut alors faire en sorte de donner à ces bras de levier la plus petite longueur possible.

Ces freins, employés comme nous venons de le dire, sont très-mauvais, surtout lorsqu'on s'en sert pour donner à une machine toute la sécurité possible. Quand la vie des hommes se trouve mise en jeu, comme dans les roues à chevilles ou à marches, on a besoin de freins très-surs et très-puissants. On peut dire la même chose des machines qui servent pour l'extraction des minerais ou de la houille. Les cuveaux chargés, mus par une machine à vapeur, montent avec une trèsgrande rapidité, et il faut les arrêter très-rapidement aussitôt qu'ils sont arrivés à l'orifice supérieur du puits, sans quoi la cuveau monterait jusqu'aux molettes, briserait les poulies et tous les appareils qu'il rencontrerait sur son chemin, se briserait lui-même, et son chargement retombant dans le puits pourrait occasionner de très-graves accidents. Il faut aussi pouvoir arrêter le cuveau à un moment quelconque de la course dans un cas d'accident. Pour cela, il ne faut pas compter sur la présence d'esprit ou sur le déploiement de la force musculaire d'un homme dans un moment critique. Aussi, c'est un agent inanimé qui doit être chargé de la manœuvre de force, le rôle de l'agent intelligent étant borné au soin de lâcher une détente pour mettre en jeu l'effort principal. On a pour cela un cylindre à vapeur spécial dans lequel se trouve un piston dont la tige est chargée de produire l'effort Q quand le cylindre reçoit de la vapeur, et il suffit pour cela d'ouvrir à un moment donné le robinet qui laisse arriver la vapeur. Ce robinet peut être facilement ouvert par le mécanicien au moyen d'un certain système de leviers qui se trouve à sa portée. Si le mécanicien, ne faisant pas assez attention, aubliait d'ouvrir le robinet, le receveur placé à l'entrée du puits, assez loin de la machine, l'ouvrirait lui-même au moyen d'une transmission convenable.

Enfin, le cas où tous les deux seraient inattentifs a encore été prévu : le cuveau, en montant, rencontrerait un obstacle sur lequel il presserait, et cette pression même, transmise par un système particulier, ferait ouvrir le robinet par lequel s'introduit la vapeur.

Tout cola est évidemment fondé sur ce que l'effort développé est indépendant de celui qu'on demande du moteur. Ce dernier peut être très-petit, puisqu'il se borne à lâcher une détente, à ouvrir un robinet.

C'est à un rôle analogue que se bornent jusqu'à présent les applications de l'électricité dans l'industrie. Il serait absurde, dans l'état actuel de la science, d'employer cet agent à développer directement de la force; on peut, au contraire, s'en servir avec une grande précision pour mettre en jeu, au moment voulu, la force d'un poids ou d'un ressort.

Des courroies sans fin.

Deux arbres tournant autour des axes A et A' (fig. 94) portent des poulies sur lesquelles s'enroule une corde ou courroie sans fin convenablement tendué. Les forces P et Q étant appliquées respectivement à deux poulies ou roues montées sur les mêmes arbres, ou demande les conditions d'équilibre à l'instant où le mouvement est sur le point de naître dans le sens de la force mouvante P, eu égard aux frottements des tourillons A et A', et faisant abstraction de la roideur de la courroie, laquelle est ordinairement peu sensible. Pour plus de simplicité, on suppose les forces P et Q verticales et la courroie sensiblement horizontale entre les deux poulies.

Si la courroie est suffisamment tendue pour ne glisser sur aucune des poulies, en nommant T et t les tensions des deux portions de la courroie, R et R' les rayons des poulies, ρ et ρ' les rayons des tourillons, ρ et q le bras de levier des forces P et Q, on aura, pour l'équilibre de la poulie Λ ,

(1)
$$Pp - (T - t)R - f_1\rho \sqrt{P' + (T + t)^2} = 0;$$

pour la poulie A',

(2)
$$(T-t)R'-Qq-f_t\rho'\sqrt{Q'+(T+t)'}=0.$$

Pour que la courroie ne glisse sur aucune des deux poulles, il faut que le rapport $\frac{T}{\ell}$ soit plus petit que la valeur calculée pour le cas où le glissement est sur le point de naître. Ainsi, on devra avoir en même temps

$$\frac{\mathbf{T}}{t} < e^{\frac{f^2}{W}}$$
 et $\frac{\mathbf{T}}{t} < e^{\frac{f^2t^2}{W}}$,

s et s' étant les arcs embrassés par la courrole sur les poulles A et A'. Dans l'hypothèse de l'énoncé, on a

$$\frac{s}{R} = \frac{s'}{R'} = \pi;$$

mais le coefficient f peut n'être pas le même pour les deux poulles.

Soit m le plus petit des seconds membres des inégalités précédentes; on devra poser

(3)
$$\frac{\mathbf{T}}{t} < m$$
, ou bien $\mathbf{T} = \mathbf{K}mt$,

K étant un nombre moindre que l'unité et d'autant plus petit que l'appareil sera exposé à plus de secousses. Si cette circonstance n'existe pas, on fera K=0.9 environ.

Les équations (1), (2), (3) fournissent la solution du preblème en permettant de calculer les inconnues P, T, t. Connaissant ainsi les tensions T et t que les deux brins de la courrole prendront dans le mouvement uniforme, on aura la tension que l'on devra donner à la courrole dans l'état d'équilibre, en admettant que la somme T+t reste à très-peu près constante. Soit donc T, la tension commune des deux brins quand l'appareil est en équilibre, on aura

$$2T_1 = T + t_1$$

ce qui détermine la valeur minima de T.

En général, on doit éviter de tendre la courroie heaucoup plus qu'il ne faut, parce que la résultante des deux tensions produit une pression sur chacun des axes et donne par conséquent lieu à un accroissement de frottement.

Indépendamment des veriations de tensions qui sont dues au mouvement, la courroie en subit encore d'autres qui dépendent de l'état hygrométrique de l'atmosphère. Pour y remédier, on emploie une poulie de tension appelée aussi tendeur.

Une courrole sans fin étant en mouvement sur une poulle motrice et sur une poulle folle, à l'instant où on la fait passer sur une poulle résistante, commence par y glisser; car la partie immobile ne saurait prendre instantanément la vitesse de la courrole. On évite ainsi les chocs, le mouvement de la poulle résistante s'accélérant peu à peu sous l'effort tangentiel $\mathbf{T}-t$.

Tant que le glissement dure, on a

$$T = te^{f\alpha}$$
.

Mais nous avons admis

$$T + t = 2T_0$$

d'où

$$T - l = 2 \frac{e^{f\alpha} - 1}{e^{f\alpha} + 1} T_0$$

CHAPITRE IV.

APPAREILS SERVANT A MESURER LE TRAVAIL DES FORCES.

L'expression générale du travall d'une force F, correspondant à un certain espace parcouru par son point d'application, étant

$$TF = \int_{s_{*}}^{s} F ds \cos \overline{F_{*} ds},$$

les formules de quadrature rigoureuse ou approximative nous permettront de calculer cette quantité toutes les fois que nous connaîtrons la loi qui lie la force tangentielle à l'espace parcouru.

Dans le cas où cette loi n'est pas susceptible d'une expression mathématique, on a des appareils qui donnent la force en chaque point et qui enregistrent leurs indications sous forme graphique. On s'arrange ordinairement de manière à faire décrire à ces instruments une courbe dont les abscisses soient proportionnelles aux chemins parcourus et les ordonnées aux efforts tangentiels; l'aire de cette courbe représente le travail. Enflu, ces mêmes appareils calculent cette aire soit en même temps que la courbe se décrit, soit postérieurement.

Nous allons en donner quelques exemples.

§ XIII. - TRAVAIL DE LA VAPEUR SUR UN PISTON.

On sait que la partie essentielle de la machine à vapeur est un cylindre dans lequel se meut un piston. La force élastique de la vapeur s'exerce à la fois sur les parois fixes du cylindre et sur le piston mobile; elle développe donc un certain travail tant que le piston peut marcher dans le sens de la pression qu'il supporte. Cherchons d'abord à calculer d'une manière générale le travail developpé par la force élastique d'un gaz renfermé dans une enveloppe quelconque, quand cette enveloppe éprouve un changement de forme quelconque.

Désignons par p la pression de la vapeur, c'est-à-dire le nombre de kilogrammes qui ferait équilibre à la force élastique de cette vapeur s'exerçant sur un mêtre curré de surface : chaque élément ω de la surface Interne de l'enveloppe supporte une charge $p\omega$, et l'on obtient le travail élémentaire de cette force en multipliant $p\omega$ par la projection sur la normale du chemin parcouru.

Donc le travail élémentaire de cette force est T, = phw, h étant la portion de la normale interceptée entre les deux positions de l'enveloppe. Or, la quantité hw peut être représentée par le volume du tronc de prisme ayant w pour base, et terminé aux deux surfaces. Donc le travail élémentaire pour tout le gaz est

T. Jpdv.

Pour pouvoir intégrer, il faut connaître la loi qui lie p à ν , Considérons seulement deux cas :

r° L'enveloppe est en communication avec un réservoir à pression constante. Alors on a

$$\mathbf{T} = p \int d\mathbf{v} = p \left(\mathbf{v}_i - \mathbf{v}_t \right).$$

2º L'enveloppe est isolée. On ne sait pas alors la lot qui lie p à v, à moins que la température ne soit constante. Alors, d'après la loi de Mariotte, on a

$$pq = const. = C;$$

done

$$\bar{v} = \int \frac{Gdv}{v} = G \log v + K.$$

Appliquons ceci au cas le plus ordinaire d'une machine à vapeur à détente.

Pendant que le piston parcourt un chemin v_k (fig. 55), le cylindre communique avec la chaudlère, de sorte que le gaz est à une pression constante p_0 ; le travail du piston pour co parcours est égal à p_1v_0 .

Ensuite la communication est interrompue, et le volume ve de vapeur se dilate. Donc le travail est

or, en supposant la température constante, on a

$$p_*v_* = pv_*$$

d'où

$$p = \frac{p_e v_e}{v}$$
;

donc le travail est

$$p_*v_*\int_{v_*}^{v_*}\frac{dv}{v}=p_*v_*\log ext{hép.}$$
 $\frac{v_*}{v_*}=p_*v_*\log ext{hép.}$ $\frac{p_*}{\rho_*};$

donc le travail pour toute la course du piston est égal à

$$p_{\theta} v_{\theta} \left(\tau + \log \min_{p_{\theta}} \frac{p_{\theta}}{p_{\tau}} \right) (*).$$

Il faut retrancher de cette expression, pour avoir le travail réel du piston, le travail résistant qui résulte de la présence du gaz ou de la vapeur derrière lui, car le corps de pompe communique avec un condenseur ou avec l'atmosphère. Dans les deux cas, la pression est constante et égale à p₂. Le travail produit est donc

$$v_1 p_2 = \frac{p_4 v_4}{p_1} p_2.$$

^(*) Si je suppose que p, tende vers zéro, c'est-é-dire que le volume du rorps de pompe supmente iodéfiniment, le travail correspondant est infini. Il semble ainsi qu'une mome quantité de vapear puisse fournir un travail infini. C'est la une de ces absurdités qui montrent combien de précautions sont nécessaires pour l'emplei des formules établies dans certaines hypothèses qu'on est porté à publier une fois qu'on est en pessession du résultat. Ici, nous avons établi la formule en supposant la température constante. Or, si la vapeur se dilate, il y a abaissement de température, à molus qu'on ne restitue de la chalcur au corps de pompe su meyen d'une double suvicappe de vapeur par example; de sorte que le travail pourra devenir infini, suis il est clair qu'on devra compter pour qualque chose la disleur qu'on est obligé de fournir pour maintenir le gaz à une température constante. C'est ainsi que le poids d'une horlege peut servir indéfiniment et developpe dans un espace limité une quantité de travail indéfinie, à la goudition qu'on le remonte à des intervalles de temps convenables.

224 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT.

Donc enfin, le travail disponible sur le piston est

$$v_a p_b \left(1 + \log \frac{p_b}{p_1} - \frac{p_b}{p_1}\right) (*)$$

Étant donnée une machine à vapeur en marche, il est trèsintéressant de mesurer directement le travail réellement développé sur le piston, afin de voir dans quelle mesure les formules précédentes peuvent représenter le phénomène. Ce travail sera loin d'être entièrement utilisé par la machine, à cause des frottements qui existent dans les pièces qui transmettent le mouvement du piston à l'outil.

Voici la description de l'appareil qui donne la solution de cette question.

Indicateur de Watt.

Un petit cylindre AB (fig. 100) est disposé de manière à se visser sur l'un des fonds du cylindre de la machine, et communique avec l'intérieur par son extrémité A. Un piston C reçoit l'action de la vapeur, et monte plus ou moins dans le cylindre AB, en comprimant un ressort en hélice qui le surmonte. Un crayon, fixé à la tige du piston, vient s'appuyer par sa pointe sur un cylindre latéral D qui est recouvert d'une bande de papier, et qui reçoit autour de son axe EF un mouvement de rotation alternatif proportionnel au mouvement du piston de la machine à vapeur. Le crayon trace une courbe fermée sur le papier qui enveloppe le cylindre D; l'aire de cette courbe sert de mesure au travail moteur développé par la vapeur pendant que le piston de la machine cède à son action, diminué du travail résistant qu'elle occasionne lorsque ce piston marche en sens contraire.

La forme théorique de la courbe est celle de la fig. 101, dans loquelle AB représente la ligne atmosphérique, c'està-dire la ligne que décrirait le crayon si la vapeur dans le

$$\frac{N}{60\times75}\,\nu_{\rm e}\,p_{\rm e}\Big(\nu+\log\frac{p_{\rm e}}{p_{\rm e}}-\frac{p_{\rm e}}{p_{\rm e}}\Big)\ ({\rm Pexenter}),$$

cylindre conservait la pression atmosphérique. Je suppose qu'au départ du piston le crayon soit en C; il décrira d'abord une ligne horizontale CB, parce que pendant un certain temps le corps de pompe communique avec la chaudière et que par suite la vapeur y garde une pression constante. Ensuite, la pression diminue, le crayon décrit la courbe DE. Puis le corps de pompe communique avec le condenseur, la pression descend rapidement, ce qui donne une droite EF, le point F correspondant à la pression du condenseur; puis, quand le piston revient à sa première position, la pression ne changeant pas, le crayon décrit l'horizontale FG. Enfin on fait arriver la vapeur, la pression augmente presque instantanément, ce qui donne une verticale GC.

En pratique, on n'obtient que des courbes approchées de celles-là et qui oscillent de part et d'autre d'une certaine position moyenne. C'est l'aire de cette courbe moyenne qu'on prend pour la mesure du travail.

On peut graduer l'indicateur de Watt et chercher à quelle hauteur doit monter le crayon pour une pression déterminée, et par sulte, inversement, étant donnée la position du crayon, déterminer la pression. Il suffit de retourner l'indicateur et d'y suspendre successivement des poids qui produiront sur le ressort des charges correspondant aux pressions de 1 atmosphère, 2, 3, etc. Il est facile de déterminer le poids qui correspond à 1 atmosphère quand on connaît la section du cylindre AB. En effet, la pression atmosphérique équivaut à un poids de 10330 kilogrammes par mêtre carré; donc, si A est la section du cylindre rapportée au mêtre carré,

A×10330

est le poids qui correspond à la pression de a atmosphère sur le piston C.

L'indicateur de Watt donnerait exactement à chaque instant la pression de la vapeur dans l'intérieur du cylindre, s'il y avait équilibre entre la force résultant de cette pression et la tension du ressort. Or, il n'en est point ainsi pendant que la pression de la vapeur diminue par l'effet de la détente, et surtout pendant que cette même pression augmente rapidement au commen-

^(*) Si N désigne le nombre de simples courses du pisten par minute, la force de la machine ou chevany est

226 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT. cement de la course du piston, lorsqu'on vient d'ouvrir brusquement la communication du cylindre avec la chaudière.

Aussi le sommet C du diagramme présente-t-il toujours une pointe plus ou moins haute, provenant de ce que le piston est violemment lancé vers le haut, dépasse la position qui conviendrait à l'équilibre, et ne se fixe dans cette position qu'après un certain nombre d'oscillations dont la troce est visible sur la courbe. On atténue cet effet en diminuant la masse du piston, résultat qui n été obtenu par M. Clair en construisant en aluminium le piston ainsi que sa tige.

M. Clair avait aussi imaginé, par une combinaison cinématique extrémement ingénieuse fondée sur les propriétés de l'encliquetage Dobo, de remplacer le mouvement alternatif du cylindre sur lequel se trouve le papier par un mouvement continu, de manière que les courbes tracées par le crayon pour un certain nombre de coups de piston successifs se placent à la suite les unes des autres au lieu de se superposer. La disposition ancienne est peut-être préférable, en ce sens qu'elle fait mieux ressortir la courbe moyenne au milieu des irrégularités accidentelles qui affectent chaque coup de piston.

§ XIV. - DYNAMOMETRES A BANDE ET A COMPTEUR.

Pour mesurer facilement une force considérable, on fait usage de dynamomètres fondés sur les propriétés des lames élastiques fléchies par un effort transversal ("fig. 95). Deux lames de ressort parallèles sont réunles par leurs extrémités; et s'il's'agit, par exemple, de mesurer l'effort d'un cheval attelé à une voiture, on attachera le milieu de l'une des lames à la voiture, et on fora tirer le cheval sur l'autre lame. L'expérience prouve que l'écartement des points C et D est proportionnel à l'effort exercé, et il est facile de déterminer expérimentalement l'écart correspondant à un effort connu.

Dynamomètre de traction à bande.

On peut enregistrer d'une manière continue les indications fournies par cet appareil, en le combinant avec un système de coar. IV. — APPAURIES MESURANT LE TRAVAIL DES FORCES. 227 bobines à bandes de papier, malogue à celui que représente la fig. 99 bis.

La force de traction est appliquée suivant la direction AB et détermine un accroissement de la distance des milieux C, D des deux lames. La bande de papier se meut au-dessous du dynamomètre suivant une direction perpendiculaire à AB. Un grayon fixé au point D trace une ligne courbe sur la bande de papier; un autre crayon porté par une pièce qui est fixée au point C trace en même temps la ligne que traceralt le premier crayon, si le point D ne s'était pas écarté du point C par l'action de la force. La distance mn de ces deux lignes (fig. 96), prise perpendiculairement à la longueur de la bande de papier, sert de mesure à la force qui agit sur le dynamomètre, au moment où le crayon fixé en D marque le point m. Si la bande de napier est animée d'un mouvement uniforme transmis par un mécanisme d'horlogerie, la courbe obtenue fait connattre la tot de la force par rapport au temps; si le mouvement de la bande est proportionnel à celui du corps auquel est appliques la force de traction, la courbe tracée sur la bande par le crayon D fait connaître la loi de cette force par rapport au chemin parcouru. Dans ce dernier cas, l'atre mupq fournit la valeur du travail de la force correspondant au temps pendant lequel la bande a marché de la quantité ny.

Dynamomètre de traction à compleur,

Un plateau circulaire AB (fig. 97) reçoit un mouvement de rotation autour de son axe CD; ce mouvement est proportionnel à celui du corps auquel la force est appliquée. Une botte E, fixée au milieu de la lame antérieure d'un dynamomètre, porte une roulette qui est trés-mobile autour d'un axe parallèle à la direction de la force, et qui s'appuie en G sur le plateau; cette roulette touche le plateau en G lorsque aucune force n'écarte les lames du dynamomètre. La force de traction ayant transporté la roulette de C en G, et le plateau ayant un mouvement proportionnel à celui du point d'application de la force, on reconnaît aisément que la quantité dont tourne la roulette par suite de son adhérence avec le plateau est proportionnelle au travail de la force. Le mouvement de la roulette se transmet

228 DEUXIÈME SECTION. - DES MACHINES EN MOUVEMENT.

par un mécanisme d'horlogerie à un cadran divisé dont les diverses parties passent ainsi sous un point de repère fixe. L'observation des positions initiale et finale de ce cadran fait connaître le nombre de tours dont la roulette a tourné pendant la durée de l'expérience, et, par suite, le travail produit par la lorce pendant ce temps. On détermine la quantité de travail qui correspond à chaque division du cadran mobile, par une expérience préalable.

Les dynamomètres de traction à bande et à compteur peuvent être employés, par exemple, pour mesurer le travail développé dans le tirage des voitures. Dans ce cas, on transmet à la bande de papier, ou au plateau, un mouvement proportionnel à celui de la voiture, au moyen d'une corde sans flu que l'on fait passer dans la gorge d'une poulie adaptée au moyen de l'une des roues de la voiture.

Les appareils à bande ont l'avantage de donner la loi de variation de l'effort avec toutes les circonstances.

Manivelle dynamométrique.

Cette manivelle se substitue à une manivelle ordinaire, lorsque l'on yeut mesurer le travail nécessaire pour entretenir le mouvement de rotation de l'arbre auquel elle est adaptée. Une lame de ressort A (fig. 98), fixée par une de ses extrémités dans la pièce B qui fait corps avec l'arbre, vient passer à son autre extrémité entre deux conteaux d'acier portés par le bras CD de la manivelle. Ce bras CD est évidé de manière à laisser toute liberté au ressort A qui passe à son intérieur; il peut d'ailleurs tourner librement autour du petit cylindre E fixe à la pièce B dans le prolongement de l'axe de rotation de l'arbre. Lorsqu'on agit sur la poignée D pour faire tourner l'arbre, cette action se transmet tout entière à l'arbre par l'intermédiaire du ressort qui fléchit en conséquence. La pièce B porte un appareil à bande de papier disposé en arrière du ressort; la bande se meut proportionnellement au mouvement de rotation de l'arbre et dans la direction du ressort A, lorsqu'il n'est pas tendu. Un crayon porté par le bras CD de la manivelle trace une courbe sur la bande de papier; un second crayon, porté par le support de la bande, trace en même temps la ligne que le premier crayon tracerait si le ressort A n'était pas tendu pendant le mouvement. Ces deux lignes servent à déterminer le travail développé par la force qui agit sur la manivelle, comme dans le cas du dynamomètre de traction à bande.

Dynamomètre de rotation.

Pour mesurer le travail que développe une machine en produisant le mouvement de rotation d'un arbre soumis à l'action de diverses résistances, on se sert de dynamomètres qui ont une grande analogie avec la manivelle dynamométrique. Trois poulles A, B, C, destinées à recevoir des courroles, sont montées sur un arbre DE (fig. 99). La première A est folle sur l'arbre, et peut tourner seule, undis que le reste de l'appareil est en repos. La seconde poulie B est fixée invariablement à l'arbre DE. La troisième poulie C'est folle sur l'arbre, comme la première; mais elle ne peut pas tourner indépendamment de lui, parce qu'elle lui est reliée par des ressorts. Ces ressorts, annlogues à celui de la manivelle dynamométrique, sont implantés dans l'arbre DE, et dirigés suivant des rayons de la poulie C; il y en a ordinairement deux, opposés l'un à l'autre. Les extrémités de ces ressorts sont engagées entre des couteaux d'acier que porte la poulie C près de sa circonférence (fig. 99. détail C'). Lorsque la poulle B tourne, elle entraîne l'arbre DE qui fait corps avec elle; cet arbre entraîne à son tour la poulie C par l'intermédiaire des ressorts qui fléchissent plus ou moins, suivant que la poulie C éprouve une résistance plus ou moins grande. Pour se servir de cet appareil, on l'emploie comme intermédiaire pour la transmission du mouvement à l'arbre auquel sont appliquées les résistances à vaincre. On enlève, par exemple, un manchon, qui sert à relier ensemble deux portions de cet arbre; puis on adapte à chacune de ces deux portions ainsi rendues Indépendantes l'une de l'autre, deux tambours M, N, destinés à recevoir des courroles qui passent en même temps sur les poulles B, C de l'appareil. La poulie folle A sert à interrompre et à rétablir à volonté la transmission du mouvement, par un transport latéral de la courroie du tambour M. Un apparell à bande de papier ou à compteur est installé à côté de la poulle C (fig. 99 bis); le

§ XV. - FREIN DYNAMOMÉTRIQUE DE PRONY.

Dapuis longtemps les mécaniciens ont cherché à mesurer par des moyens directs, non pas le travail développé par le moteur, mais blen la quantité de travail transmise aux arbres tournants pendant le travail régulier des machines, parce que c'est là ce qui intéresse surrout l'industriel. Dans le cas d'une machine à vapeur, par exemple, on peut mesurer le travail de la vapeur dans le cylindre au moyen de l'indicateur de Watt. Mais il est possible qu'il y ait dans l'intérieur du cylindre un travail considérable produit, et que, par suite de mauvaises dispositions de la machine, le travail transmis à l'arbre soit de beaucoup diminué et rendu trop faible pour les machines que l'arbre tournant devra mettre en mouvement, On emploie pour mesurer le travail disponible le frein de Prony. J'entends par travail disponible sur un arbre donné le travail transmis par le moteur à la machine, diminué de celui qui est absorbé par les résistances passives des pièces intermédiaires comprises entre le récepteur et l'arbre que l'on considère.

Le principe de cette machine est très-simple; il consiste à supprimer les résistances ordinaires et à employer tout le unvail transmis à l'arbre tournant pour vaincre un travail résistant facile à évaluer. Et comme, dans le mouvement régulier de la machine, le travail moteur est égal au travail résistant, nous aurons ainsi ce que nous cherchions, le travail moteur transmis à l'arbre à la condition que celui-ci se trouve dans l'expérience absolument dans les mêmes conditions de vitesse et autres que dans le travail régulier.

Il faut que l'arbre ait en un point de sa longueur une partir tournée, ou bien que l'on lixe dessus une poulie en fonte à gorge plate, également tournée. Le frein dynamométrique tel qu'il a été proposé et décrit par M. de Prony consiste en un levier ab garni d'un coussinet e qui repose sur l'arbre tournant e, auquel la direction du levier est perpendiculaire (fig. 102). Une autre pièce a' b' placée sur l'arbre est réunie à la première ab par deux boulons d, d', au moyen desquels on peut serrer à volonté l'arbre entre les pièces ab, a' b', qui portent le nom de mâchoires du frein. De la compression de l'arbre e entre les mâchoires résulte à se circonférence un frottement qui, pendant le mouvement, tend à entraîner le levier ab et à le faire participer à la rotation de l'arbre; mais un poids P, placé dans un plateau fixé au bout du levier s'oppose à son mouvement et fait constamment équilibre au frottement qui se développe sur la circonférence de l'arbre.

Pour faire un essai, on commence par supprimer l'action de toutes les résistances qui agissent sur la machine fonctionnant régulièrement; puis, en augmentant ou diminuant le serrage des écrous, on amène la machine à sa vitesse de régime; en même temps on maintient le levier immobile en plaçant un poids convenable dans le plateau.

Si cette dernière condition est satisfaite et qu'on arrête l'expérience à un instant où la vitesse de la machine soit exactement ce qu'elle était à l'instant initial, il est clair que le travail moteur transmis à l'arbre pendant toute la durée de l'essai est exactement égal au travail résistant développé par le frottement des mâchoires sur la jante de la poulle.

Or, ce dernier travail est facile à obtenir. En effet, soit F une des forces tangentielles provenant de l'action des machoires sur la circonférence de la poulie; si nous désignons par r le rayon de cette poulie et par a la vitesse angulaire de l'arbre, nous aurons pour le travail de la force F en une seconde

Far,

et pour le travail moteur dépensé pendant le même temps,

 $T_{\omega} = \omega r \sum F$.

D'un autre côté, le levier est en équilibre sous l'action du poids P, dont le moment, par rapport à l'axe, est PR, R étant 232 DEUXIÈME SECTION. — DES MACHINES EN MOUVEMENT, la distance du poids P à l'axe de rotation, et des forces du frottement dont les moments sont représentés d'une manière générale par Fr; donc on a

$$PR = r \sum_{i} F_{i};$$

$$T = PR\omega.$$

On voit qu'on n'a besoin de conneître ni la pression exercée par les mâchoires du frein sur l'arbre, ni le rapport de cette pression au frottement F, et qu'il suffit de la faire varier en serrant ou desserrant les boulons d, d' et augmentant ou diminuant en même temps le poids P jusqu'à ce que l'arbre ait pris la vitesse sur laquelle on veut opérer (*).

La formule précédente a été établie dans l'hypothèse que la vitesse de la machine était exactement la même à la fin de l'essai qu'au commencement, et que, de plus, pendant toute la durée de l'essai le levier du frein reste immobile.

La première condition oblige à donner à l'essal une durée assez longue, dix à quinze minutes au moins, pendant lesquelles on mesurera plusieurs fois la vitesse au moyen d'une montre à secondes. Si la vitesse a diminué, c'est que le poids mis dans le plateau est trop fort, et il faut recommencer l'essai après avoir déchargé le plateau. Suivant le plus ou moins d'habileté de l'opérateur, ces corrections pourront entraîner des tâtonnements pénibles; mais il faut remarquer qu'un trèsfaible changement de vitesse peut correspondre à une assez grande variation de force vive et, par suite, à une dépense notable de travail, si la machine possède plusieurs pièces faisant fouction de volants. L'erreur provenant de cette source aura d'ailleurs une importance relative d'autant plus faible que l'essai aura duré plus longtemps.

Quant à la deuxième condition, il n'est pas possible de maintenir le levier dans une position invariable pendant la durée que nous avons assignée. Le coefficient du frottement du frein sur la poulie, malgré toutes les précautions qu'on peut prendre (*), ne reste pas constant, de sorte que l'équilibre se trouve fréquemment rompu; le levier s'élève ou s'abaisse, et, pour le ramener à l'horizontalité, on est obligé de diminuer ou d'augmenter le serrage, en agissant avec une clef sur les écrous.

Il est évident que si, par suite des oscillations du levier, la moment du poids P (ainsi que le moment du poids du frein lui-même, dont il faut tenir compte toutes les fois que l'arbre n'est pas vertical) subit des variations, les résultats obtenus seront nécessairement incertains et conduiront à des quantités de travail différentes, suivant que le levier sera resté plus ou moins longtemps dans telle ou telle position. Il est donc indispensable que ces moments soient bien constants pour toutes les obliquités que le levier a la faculté de prendre.

On obtient la constance du moment de la charge du frein en attachant le plateau au levier à l'aide d'une courrole fixée à l'extrémité supérieure d'un arc en fer centré exactement sur l'arbre (fig. 103).

Quant au moment du poids des freins, il ne peut être rigoureusement constant que si l'appareil est équilibré autour de l'axe de rotation, ce qui n'est pas le cas habituel. C'est là une cause d'erreur qui n'a été complétement évitée que dans le frein circulaire de M. Kretz (fig. 104), que nous décrirons dans un instant.

Lorsque ces deux conditions sont remplies, les oscillations inévitables du frein ne troublent en rien l'exactitude des résultats obtenus dans l'essai (**).

Le moment du poids, pour les freins ordinaires, doit être

^(*) En mesurant le travail transmis par le moteur pour différentes vituses de la machine, un déterminora la vitesse qui correspond au maximum d'effet utile, vitesse qui, ainsi que nous l'avens dit, est sans auteun rapport avec la vitesse qu'en vent faire prondre à l'outil.

^(*) Il faut, pour l'aniformité du frottement, que la jante de la poulle soit teurnée et parfuiement centrée sur l'axe de rointien, que les surfaces frottantes soient, pandant tente la durée de l'essal, à la même température et dans le même élat de lubrifaction. Il y aurait avantage, pour que l'effort nécessaire au surrage (At réduir au minimum, à ce que le coefficient de frottament fût très-grand, en même temps que régulier.

On obtient la régularité et en évite l'échaussement en arrownt la poulie et les machoires d'eau pure. Il est inuitie et même mauvais d'employer de l'eau de saven.

^(**) Ces indications sont extraites du Mémoire sur les conditions à remplie dans l'emploi du frein dynamamétrique, par M. Kron (Camptes rendus, 7 mars 1864).

déterminé par une expérience préalable dans laquelle on fait reposer la mâchoire supérieure du frein sur un couteau A (fig. 105). Le frein tend à tomber du côté du plateau; on le maintient horizontal à l'aide de cales. Un peu au-dessus du frein est disposé un fléau de balance BD dont l'une des extrémités B est précisément sur la direction de la verticale passant par le centre de gravité du poids placé dans le plateau. On attache une courroie, d'une part à cette extrémité, d'autre part à la partie inférieure de l'arc; on enlève les cales et on détermine le poids II qu'il faut suspendre en D à l'autre bout du fléau pour maintenir le levier horizontal.

Le poids II, qui, ainsi appliqué à la distance R = AE, a précisément le même moment que le poids de l'appareil, se

nomme tare du frein.

L'inconvénient de cette manière d'opérer est que le levier ainsi placé constitue une espèce de balance, mais une balance paresseuse, de sorte qu'il règne une assez grande incertitude sur le poids qu'on doit mettre pour obtenir l'équilibre. Il est cependant bien important d'avoir ce poids avec une grande exactitude, vu que pour des vitesses assez fortes il faut trèspeu de chose pour représenter un cheval de force. Une autre cause d'erreur très-grave provient de ce que, pendant la tare, la rotation ne se fait pas autour du même axe que pendant l'essai, et en vertu de ce que le frein formé de voussoirs se déforme, ce qui modifie la position de son centre de gravité. M. Demondésir a supprimé cet inconvénient en opérant de la manière suivante.

On construit un disque en bois ayant exactement le mêma diamètre que la poulie et traversé perpendiculairement à son plan par un couteau dont l'arête passe par le centre (fig. 106). On monte le frein sur ce disque comme il doit l'être sur la poulie pendant l'expérience; on fait reposer tout le système par le tranchant du couteau sur un appui horizontal. La tare s'obtient alors par rapport au centre de la rotation pendant l'essai, et le degré de sensibilité de la balance ainsi constitué donne la mesure de l'approximation que l'on peut obtenir avec le système du frein employé.

En général, il sem bon de refaire la tare immédiatement après le dernier essai, car le frein est toujours fortement CHAP. IV. — APPAREILS MESURANT LE TRAVAIL DES FORCES. 435 mouillé dans l'expérience, et l'eau absorbée par les mâchoires et le levier pout apporter à la tare des modifications notables.

Du serrage. — Ces précautions étant prises, il faut rendre la manœuvre des écrous aussi facile que possible, et s'arranger de manière que les efforts exercés pour cela aient un moment nul par rapport à l'axe, car le contraire fausserait évidemment les résultats de l'ossai. Enfin il importe d'arrêter les oscillations le plus vite possible, sans quoi le levier pourrait être emporté dans un sens ou dans un autre avent que le serrage convenable ait pu être établi.

Pour éviter ces accidents, il est indispensable de limiter les excursions que peut faire le frein de part et d'autre de l'horl-zontale. On arrive à ce résultat en installant deux arrêts solides G et II (fig. 105 et fig. 102), tels que de fortes traverses en charpente, contre lesquelles le levier vient buter à la hauteur des plus grandes oscillations qu'on veut lui permettre. Seulement, dès que, dans un essai normal, le levier a touché l'un ou l'autre de ces arrêts, l'opération a manqué, car le choc a perdu une certaine quantité de travail.

Le serrage est rendu facile et les efforts à exercer sont transmis dans l'aplomb de l'axe en faisant agir une clef double sur le système de roues et de pignons indiqué dans la fig. 103 (*); mais, quelque facile que soit cette manœuvre, elle exige toujours un certain temps, et il convient, afin de raleatir les oscillations, de donner une valeur suffisamment grande au moment d'inertie de l'appareil, c'est-à-dire d'avoir une poulie de très-grand diamètre, et d'éloigner le plateau de l'axe le plus possible.

Stabilité du frein. — On pout s'arranger de manière que, s'il y a augmentation ou diminution du moment des froitements, les variations du moment de la charge et des poids rétablissent l'équilibre; c'est ce qui arrive quand le levier est placé audessous sans arc de cercle. On obtient ainsi une grande stabilité, mais, par cela même, on s'expose à des erreurs, car le levier peut prendre une nouvelle position d'équilibre sans que l'opérateur soit obligé de manœuvrer les écrous et, par suite,

^(*) L'ideo de cette disposition est de M. de Saint-Lèger.

a36 DEUXIEME SECTION. — DES MACRINES EN MOUVEMENT. de remettre le système dans su position normale. Avec l'autre disposition, l'opérateur est obligé de corriger immédiatement les moindres variations, sous peine de laisser manquer l'essai.

Diverses dispositions données au frein.

La disposition la plus habituelle est celle de la fig. 102, dans laquelle la mâchoire inférieure est souvent remplacée par une série de voussoirs maintenus par une bande en fer (fig. 106).

La fig. 103 représente le frein employé par M. Rolland et construit par M. Farcot (*) pour l'essai des machines de la

manufacture des tabacs de Strasbourg.

Le frein est monté sur une poulie en fonte tournée sur sa gorge et composée de deux parties qui se rapprochent pour embrasser l'arbre, et qui se réunissent au moyen de boulons. La poulie est creuse, et ses joues sont percées de trous par lesquels on peut introduire dans l'intérieur de la couronne un courant d'eau dans le but de prévenir l'échauffement de la jante et d'uniformiser le frottement. Un deuxième courant arrose, dans le même but, la partie extérieure de la couronné; l'eau est amenée au moyen de deux tuyaux en plomb qui communiquent avec un réservoir supérieur dont le niveau est maintenu constant au moyen d'une pompe élevant l'eau d'un paits. On voit que de cette sorte les surfaces frottantes sont maintenues à une température constante et toujours dans le même degré d'humidité, et que, par suite, les conditions nécessaires à l'uniformité du frottement se trouvent remplies. On emploie quelquefois l'eau de savon; mais, si le frottement devient un peu plus régulier, il devient nossi beaucoup plus doux, ce qui a l'inconvénient d'exiger un trop grand effort pour le serrage.

La mâchoire supérieure du frein est une pièce de bois entaillée circulairement. La mâchoire inférieure su compose d'une série de voussoirs en bois juxtaposés et retenus par une bande de fer plat qui les maintient appuyés contre la gorge,

TA DEL COL Les Mépositions refletades de ce troin avaient die indiquées autécieurement par M. da Sajut-Legar. (Annales des Mines, t. XII, 1837.) CHAP. IV. — APPAREILS MESURANT LE TRAVAIL DES PORCES. 237. Cette bande de fer se termine par deux tiges rondes filetées à leur extrémité pour recevoir un écrou au moyen duquel on produit le serrage.

Frein circulaire. — Enfin la disposition circulaire (fig. 104) imaginée par M. Kretz et employée pour la première fois par cet ingénieur en 1862 permet d'équilibrer parfaitement tout l'appareil et paraît réaliser de la manière la plus satisfaisante les conditions d'exactitude et de facilité dans la manœuvre.

Le frein est monté sur le volant ou sur une roue de grand diamètre. Il se compose d'une série de voussoirs en bois fixés sur une bande de fer et symétriquement disposés par rapport à l'arbre. Aux deux extrémités de la bande sont deux vis de sens inverse qui s'engagent dans un écrou double A. La facilité avec laquelle cet écrou se manœuvre au moyen de quatre bras de levier est un premier avantage de la disposition que nous étudions : le frottement des écrous contre les embases fixes est entièrement supprimé; de plus, le moment des efforts qu'il faut exercer est toujours pul par rapport à l'axe. La courroie est fixée à un secteur centré sur l'arbre, et on s'arrange de manière que le centre de gravité de l'ensemble du frein, moins la courrole et le plateau, soit exactement sur l'axe, ce qui donne une grande sensibilité à l'appareil et enlève les incertitudes provenant des variations du moment du poids pendant l'essal. S'il était au-dessus, la balance serait folle; audessous, elle serait paresseuse.

Il n'y a donc pas à s'occuper de la tare du frein, ou plutôt cette opération consiste simplement à faire coïncider le centre de gravité avec le centre de rotation, résultat auquel on arrive facilement par l'addition de lames de plomb sur les parties

trop légères.

La tare de ce frein reste très-sensiblement constante pendant l'essai, parce que l'eau qui vient imprégner les voussoirs se répartit régulièrement autour de l'axe; on peut du reste la rendre invariable en saturant tous les voussoirs d'eau avant l'expérience.

PIN DU DEUXIÈME FASCICULE.