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Universidad de Guanajuato

SALAMANCA, GTO. Septiembre 2015



UNIVERSITY OF GUANAJUATO

CAMPUS IRAPUATO–SALAMANCA
ENGINEERING DIVISION

Visual Features for
Fast Object Recognition

T H E S I S

TO OBTAIN THE DEGREE OF:

DOCTOR OF ELECTRICAL ENGINEERING

PRESENTS:

M.Eng. Fernando Enrique Correa Tomé
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Abstract

In this thesis study, we explored the recognition of objects using visual fea-
tures. From the different approaches we studied during the development of
this work, three main research lines arise: a study of fast object recognition by
shape, a fast segmentation methodology, and an online object recognition sys-
tem that learns from example images. For the first study, a visual similarity
metric of shapes, based on Precision–Recall graphs is presented, as an alter-
native to the widely used Hausdorff distance (HD). Such metric, called max-
imum cardinality similarity metric, is computed between a reference shape
and a test template, each one represented by a set of edge points. We ad-
dress this problem using a bipartite graph representation of the relationship
between the sets. The matching problem is solved using the Hopcroft–Karp
algorithm, taking advantage of its low computational complexity. We present
a comparison between our results and those obtained from applying the par-
tial Hausdorff distance (PHD) to the same test sets. Similar results were
found using both approaches for standard template-matching applications.
Nevertheless, the proposed methodology is more accurate at determining
the completeness of partial shapes under noise conditions. Furthermore, the
processing time required by our methodology is lower than that required to
compute the PHD, for a large set of points. The second study presents a
split-and-merge segmentation methodology, that uses integral images to im-
prove the execution time. We call our methodology integral split and merge
(ISM) segmentation. The integral images are used here to calculate statistics
of the image regions in constant time. Those statistics are used to guide the
splitting process by identifying the homogeneous regions in the image. We
also propose a merge criterion that performs connected component analysis of
the homogeneous regions. Moreover, the merging procedure is able to group
regions of the image showing gradients. Furthermore, the number of regions
resulting from the segmentation process is determined automatically. In a

xi
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series of tests, we compare ISM against other state-of-the-art algorithms.
The results from the tests show that our ISM methodology obtains image
segmentations with a comparable quality, using a simple texture descriptor
instead of a combination of color–texture descriptors. The proposed ISM
methodology also has a piecewise linear computational complexity, resulting
in an algorithm fast enough to be executed in real time. Finally, in the third
study we present an object recognition system based on histograms of visual
features, obtained from the images containing the objects to recognize. The
system is divided in two stages, the feature extraction, and the classifica-
tion stages. The first stage involves transforming the original image to the
CIELuv color space, and then extracting four different visual features from
this space. The features are: the color hue, the color saturation, the lumi-
nance, and a texture feature that is the standard deviation of the luminance,
calculated for local neighborhoods. A histogram is then calculated from each
feature and then merged together, in order to obtain a combined feature his-
togram called THSL histogram. Later, a collection of THSL histograms is
built as our knowledge database, and is used for the classification of unseen
images. This classification stage consists in the extraction of a THSL his-
togram from the image under test. This histogram is then compared against
all the histograms in the knowledge database, and the label of the most sim-
ilar histogram is retrieved as the classification result. We performed a series
of tests, using images of small objects taken from different points of view.
The images have no background, the objects are at the same distance from
the camera, and the illumination is constant. The results obtained show a
classification success rate around the 96% for individual objects, under the
aforementioned conditions.



Chapter 1

Introduction

This thesis study explores the use of visual features for the recognition of ob-
jects, with a focus on real-time performance. We developed a shape feature
approach for object recognition, using a template matching methodology that
is performed in real-time. Also, a real-time image segmentation methodology
is proposed, using integral images to improve the computational time of a
split-and-merge approach. Finally, we present an object recognition system,
using combined histograms of color and texture features to describe the ob-
jects. The system is able to learn from examples in real-time, and achieves
a high recognition rate, for isolated objects under controlled conditions.

In this chapter, an overview of the work developed for this thesis project
is presented. The thesis guidelines are described in Section 1.1. Then, Sec-
tion 1.2 is included to clarify the different approaches, taken during the de-
velopment of the different research lines of this work.

1.1 Thesis guidelines

In this section, we include the guideline used for the development of this thesis
work. This guideline presents different approaches that may be explored in
order to achieve the general objective of this study: the development of an
object recognition system.

1
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1.1.1 Summary

In this thesis study, we propose the development of a computational environ-
ment for the learning of visual features, relevant for the detection of specific
objects in a natural scene.

The system should be able to extract different features from different
views of the same object, and select those that allow the representation of
that object.

In a stage using low-level computer vision, we propose the use of color,
texture and shape features, for the description of objects. Moreover, an
analysis of the data should be performed in order to automatically extract
the relevant data, and the features that distinguish different objects.

In a recognition stage, the system should be able to identify the presence
of the learned objects, among the different regions in the scene under analysis.
The system will be tested and validated through different applications in the
computer vision area.

1.1.2 Problem approach

The learning of objects from different views is fundamentally a perception
task, tightly relating the human visual system and our learning capacity.
Fundamentally, it should be consider how is that we, human beings, perceive
our environment, and how do we dynamically extract the information that is
important for us, maybe influenced by the context and by particular situa-
tions. To emulate this human processing system in an automatic system, the
user should only show the object of interest, and the system should be able
to learn from such demonstration. The development of a task such like this,
that comprises the characterization and the automatic learning of objects
from demonstrations [69], is a goal sought by researchers from a variety of
fields.

The machine learning techniques have proven to be promissory for the
optimization of visual attention tasks [10]. In some cases, the learning is
performed by using sample cases or study instances.

The machines are commonly used to calculate functions that indicate
certain level of fitness, likeliness, or error between what is observed and the
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data stored in memory. The complexity of the problem considerably increases
when such functions are not known a priori, and should be learned.

In one hand, in this project we propose the study of the visual character-
ization of objects and the learning of relevant features, and the subsequent
recognition of those objects. On the other hand, we have as a goal the devel-
opment of a computational system that allows us to incorporate such tasks.

1.1.3 General objective

To explore different approaches in order to develop a computational environ-
ment for the learning of objects from views, and the validation and publica-
tion of the scientific results obtained from this exploration.

Applicability of the results

The results of the research may be applied in a variety of computational
vision tasks, such as the recognition and classification of objects, searches for
images that contain those objects, or the dynamic tracking of objects, among
others.

1.1.4 Particular objectives

• The study of the visual features of the objects, the extraction of those
features, and their selection accordingly to their particular relevance.

• The evaluation of a number of machine learning algorithms.

• The integration of a development environment for systems of feature
extraction and selection, the learning of objects regarding to such fea-
tures, and the dynamic recognition of objects in the scenes under anal-
ysis.

1.1.5 Proposed methodology

In this section we briefly present the main methods to consider for addressing
the presented problem.
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This project has been conceived as an ensemble of different techniques
and algorithms, mainly computational vision and machine learning methods,
clarifying that this problem may have multiple edges.

Next, the main modules to include in the system are indicated, along
with possible approaches for their development.

Feature extraction and selection

A feature is considered as an individual metric of a property of some phenom-
ena under observation. For image analysis, numerical values of color, texture
or shape are commonly considered for the characterization of elements in the
scene [64].

Given a training set of d feature vectors (instances) of fixed size {(X1, Y1),
. . . , (Xd, Yd)}, where an instance Xi is described as an assignment of values
Xi = (Xi1, . . . , XiN), corresponding to a set of features F = (F1, . . . ,
FN), and assigned to a labeled class Yi. The classification task consists in
including a classifier H : X → Y that accurately obtains the labels of the
new instances, based on the values of their features.

For real-world applications, the relevant set of features for the given task
is rarely well defined. Commonly, it is a combination of some features. In
this regard, the selection of independent or discriminant features is essential
for any algorithm, such is our case for the recognition of objects.

Two possible settings arise at this point. The first one uses a large number
of features, making not only more difficult and slow any learning process, but
also adding confusion to the segmentation and classification processes. The
second one uses a relatively small number of features, however its calculation
is also computationally expensive, e.g. for real-time applications.

Intuitively, the use of a large number of features should lead to a better
prediction. However, in the practice, large data sets along with a large num-
ber of features not only slow down the learning process, the use of redundant
features also deteriorate the classifier outcome.

The selection of features [27] addresses this problem through the identifi-
cation of relevant features, and by removing those features that are irrelevant,
redundant, or noisy [91]. This improves the performance of any classifier, re-
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duces the computational cost, and provides a better comprehension of the
data sets [19] [54].

This stage is closely related to the learning stage, because the problem
we face is precisely to determine what features are essential for the learning–
recognition task, and which ones are redundant or even irrelevant.

Concept learning

In the project, the concept learning stage is closely related to the feature
extraction and selection, and then to the recognition of the objects of interest.
Both the features and their evaluation are aspects not known a priori and
require to be learned.

The learning module should receive as input a set of classified objects,
their attributes, and maybe some context explanation about their ranges and
properties. Then, this module should automatically build the functions for
the evaluation of other instances [58].

The literature contains a variety of approaches to the supervised machine
learning. We can mention the artificial neural networks (ANN) [92], the
support vector machines (SVM) [86], the classifier ensemble methods [71],
or the continuous scalable template matching (CSTM) [10]. Also, there are
methods based on trees, rules, connectionist nets, probabilistic nets, statistic
models, evolutionary models, among others.

It is established that the system to develop should learn those features
from an object that is common to the different views, presented to the sys-
tem in the training stage [5]. In this regard, the system should be able to
identify which descriptors are important in the learning–recognition process
[66]. For the process of selection of an adequate set of features, the relevance
of a feature may be a concept to explore [7]. For some case-based learning
algorithms, even some psychological restrictions may be used effectively as
indicators to guide the selection of features and their weighting [12].

During the development of the project, we will seek to explore those
learning algorithms that consider the concepts as groups in a feature space
[61]. This idea, associated to the weighting of those features in the groups,
may be important for the approach. In this way, each object should be
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represented by a feature vector or even by a tuple of them, along with a
weighting metric associated to the features in the given space [62].

Segmentation

Even tough this stage may be seen as only related to the project, we consider
it useful for effective object recognition. Because we look for a dynamic
integrated system, it is not feasible to assume that the image (scene) has been
correctly segmented, and that the segment classification is straightforward.

The image segmentation is one of the fundamental problems of the com-
puter vision and pattern recognition fields. In short, the image segmentation
consists in (i) separate the elements of the image in regions showing similar
visual features, and (ii) to assign a label to each pixel in such a way that
those pixels with the same label share the same visual features.

The outcome from the image segmentation process is a set of regions
(groups of pixels) that together cover the entire image. On one hand, the
segmentation should be made so the pixels in the same region are similar
to each other, regarding to certain features or properties, such as the inten-
sity, the color, or the texture. On the other hand, different regions, even
adjacent ones, should be significantly different regarding to the considered
features [75].

There are different approaches to image segmentation, we can mention
methods using: heuristic approximations, detection of edges, region-based,
and graph-based methods. Some heuristic approximations of general purpose
for the segmentation of images are the thresholding methods [57], where
decisions are taken based on the local information of the pixels. The methods
based on the detection of edges [70] are oriented to the joint connection of
lines of broken contours. These methods are prone to fail under the presence
of an inadequate contrast. The methods based on regions [29], generally
perform an image partition into regions connected by grouping neighboring
pixels of similar intensity levels. Finally, for the methods based on graphs
[23], the problem is commonly represented in therms of graphs. In this regard,
each node of the graph corresponds to a pixel in the image, and an edge
connects each pair of nodes, associating a weight to each edge accordingly
to certain property of the pixels that it connects. Additionally, a number
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of hybrid methods, using combinations of the aforementioned methods, had
been also proposed.

Other approximations aim to formalize a goal criterion for the evaluation
of a given segmentation, presenting the problem as an optimization one.
Generally, the goal is to reduce the interclass variance, in the way performed
by group analysis. Thereby, some methods had been proposed to handle
segmentation problems. Among them we can find the k-means algorithm [30]
as the most popular. This method partitions an image into several regions
by using an iterative technique. Independently of the methodology used, the
goal of the image segmentation is to simplify or change the representation
of an image into something that is more significant and easy to analyze [75].
In our case, the candidate regions to be recognized as a previously learned
object.

Object recognition

The object recognition may be seen as a supervised classification, that con-
sists in the assignment of an object to a previously learned category.

The system should dynamically identify the similarities between the cur-
rent view and the objects represented in memory [66], making this a challeng-
ing procedure. This approach to a real-time system impose a considerable
number of restrictions to the development.

1.2 Thesis development

This section briefly describes the development stages of this thesis project.
The work can be divided in three lines of research, presented next. Two
articles regarding to this work were published in scientific journals with JCR
impact factor, as mentioned below.

1.2.1 Identification of objects by shape

In the early stages of development of this thesis project, we explored the
recognition of objects by shape, following the thesis guidelines. We used a
metric developed in a previous work [18] in order to compare edge templates
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of object shapes against edge images. This comparison allowed us to identify
points in the image, where the probability of finding the shape of the object
is high. The main advantage is that the method is fast enough to be used
in real time applications. However, the method require to build a database
of edge templates for each object, possibly for multiple views. A scientific
article about this research was published in the Journal of Real-Time Image
Processing [15]. This study is described in detail in Chapter 2

1.2.2 Fast image segmentation

Following the thesis guidelines, we explore the image segmentation as a means
to extract information about the objects in an image. However, we found
that the image segmentation methodologies are difficult to use in real-time
systems.

In this regard, we developed a new segmentation algorithm that is based
on a split-and-merge methodology. We incorporated a technique called inte-
gral images, in order to simplify the calculations required by the algorithm.
The result of this line of work is an image segmentation algorithm, whose
near-linear computational complexity allows it to be used in real time appli-
cations. Furthermore, the segmentation methodology proposed also obtains
good results regarding to the quality of the segmentation, compared with
other state-of-the-art methodologies. This work, discussed in detail in Chap-
ter 3, produced an article published in the Journal of Electronic Imaging [16].

1.2.3 Object recognition system

For the object recognition system developed for this thesis work, we explored
different color and texture image features. We choose four features, one of
texture and three of color, to model the objects to be learned. We use an
histogram-based approach, where the histograms obtained from the images
are a combination of the chosen color and texture features. All histograms
obtained from individual images are recorded in a knowledge database, used
to recognize unseen examples of the objects learned. The resulting system
achieves a classification rate around the 96% for the database used.

As a result of this work, we obtained an object recognition system that is
able to learn in real time, from the examples presented to the system. Also,



Chapter 1. Introduction 9

the system is able to recognize a previously learned object, presented from
unseen points of view.

Even though the classification rate for the system is very high, the re-
sults obtained from this system are not yet ready for publication. This is
because at this stage of development, the system is not robust enough against
illumination changes, scale, varying backgrounds, and other common prob-
lems present in images. Also, a thorough testing is still required in order to
compare our system against state-of-the-art methodologies.

The object recognition system developed in this study is fully described
in Chapter 4, along with a description of the tests performed and the results
obtained.

1.2.4 Thesis organization

The next Chapters 2 to 4 present the research lines discussed above. Each
chapter contains an introduction to its corresponding study, the methodology
that was used, and a discussion about the results obtained. It is important to
mention that, in order to maintain the mathematical notation simple, some
of the symbols used are redefined in different chapters. This can be done
because the mathematical notation of each chapter is independent from the
others, so there is no ambiguity. Finally, the concluding remarks of this work
are discussed in Chapter 5.



Chapter 2

Real-time template matching

In this chapter, a methodology that performs real-time template matching
is presented. This methodology uses a similarity metric that is efficiently
computed in near-linear time, and is used to compare edge templates (i.e.
shape). This chapter is organized as follows. In Section 2.1, an introduction
to the methodology used for real-time template matching is presented. Then,
the details of the used methodology are described in Section 2.2. Finally, the
tests performed using this methodology, and the results obtained from these
tests are given in Section 2.3.

2.1 Introduction

Computer vision plays an important role in many applications nowadays. It is
used to extract meaningful information from digital images and video, aiming
to reproduce the human visual abilities. The extraction of such information
normally requires the identification of objects in a scene and, before this
information can be extracted, the presence of the object itself needs to be
ascertained. The object is then located in the scene by obtaining different
spatial features, such as translation, scale and orientation. For some video
applications, the extraction of information needs to be performed in real-
time, meaning that the processing time for a single frame (i.e. an image) is
required to be below the frame rate of the video. Owing to this restriction,
the video application requires to be optimized in time, and arises the need
for fast algorithms.

10
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To achieve real-time object detection, the volume of data and the com-
plexity of the algorithms involved need to be reduced to fit the time require-
ments. In their article, Hossain et al. [37] point out that edge information
offers more robustness than intensity information. Moreover, using edge in-
formation significantly reduces the amount of information to be processed.
Nevertheless, object detection in edge images is affected by noise, changes
in illumination, occlusions and small differences in edge locations for video
sequences. Rucklidge [74] proposes a method based on the Hausdorff dis-
tance (HD) to identify objects under affine transformations in edge images,
and Knauer et al. [48] propose a methodology also based on the HD that
handles imprecision of the data. In both articles, the HD provides the ro-
bustness required to overcome the aforementioned problems found in edge
images. Nevertheless, obtaining the HD is computationally expensive, hav-
ing a O(n2) complexity expressed in Big-O notation, where n is the input
size of the algorithm.

A number of approaches aim to use the HD in a more efficient way, to re-
duce the computing time required. Rucklidge [73] proposes a set of methods
to efficiently search a large space of affine transformations to detect object
projections, whilst Huttenlocher and Rucklidge [40] use the HD to locate
objects under translation and scaling through a subdivision procedure that
discards uninteresting regions, considerably reducing the number of evalu-
ations. Moreover, Niu et al. [63] present a methodology based on Voronoi
surfaces, increasing the calculation speed of the HD for image registration.
Their methodology further reduces the data volume by keeping only the
longer edges. For image registration tasks, Hossain et al. [36] present a low
error approximation to the HD that is computed in a near-linear time. Fol-
lowing the idea of a HD replacement, Tsapanos et al. [78] propose a O(log n)
algorithm based on HD for shape matching, applied to pedestrian detection.
Other approaches include the use of hardware acceleration to achieve real-
time image processing, such as the studies of Krishnamurthy et al. [49] and
Hanniel et al. [28], in which GPU algorithms of the HD are presented.

Even though the use of the HD for image processing is not a recent
approach, it is still widely used in the image processing field. Regarding to
shape matching and image registration, Li and Stevenson [51] use a modified
Hausdorff distance (MHD) as a similarity metric between curve segments
called sub-edges, for a robust image registration. Also, Sim and Park [76]
present an object alignment methodology that is robust against severe noise;
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such methodology uses an MHD combined with the voting procedure from
the Hough transform.

For biometric identification, Dastmalchi et al. [20] use a variant of the
HD, the partial Hausdorff distance (PHD), proposed by Huttenlocher et al.
[41] back in 1993. They report an increase in accuracy, and a reduction of
the computing time required for face recognition applications. The HD had
been previously used for face recognition purposes, such as in the article
by Hu and Wang [39], where the HD is used to compare faces, surpassing
conventional Hausdorff-based applications, and the work of Yang et al. [90],
presenting a variant of the HD that combines normalized image gradients.
This latter approach is robust against different illumination conditions for
face recognition applications. Also, Lin et al. [52] propose two variations
of the HD, used to make face recognition robust against facial expressions.
In the field of biometrics, Ali et al. [2] present a methodology based on
a variation of the HD, for palm print matching. This approach is robust
against noise and occlusion. For their part, Lin et al. [53] use a weighted HD
for automatic dental matching, with applications in forensic identification. In
robotics, Ji et al. [43] use the HD to assert the similarity between polygons for
robot localization. The HD approach is preferred in this area because robots
often have limited computing resources. Also related to the robotics area,
Xu [88] proposes a simultaneous camera autofocus and alignment method.
The HD is used here to localize patterns and to obtain invariance against
illumination changes.

In this study, we propose a similarity metric as an alternative to the PHD.
Our approach is applied to edge images, being robust against small edge lo-
calization errors, partial edges, occlusions, and providing an accurate metric
for edge completeness. Moreover, our algorithm is computed in a near-linear
time, allowing it to be used in real-time applications. This methodology is
an adaptation of the work of Correa-Tome et al. [18], originally conceived
as an empirical segmentation evaluation metric [17] and used here for edge
image comparison.

The proposed methodology works with binary images (i.e. images whose
pixels have only two possible values, usually interpreted as black and white)
containing edges, previously obtained using an edge detection algorithm such
as the proposed by Canny [11]. The edge pixels (usually the white pixels) are
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considered points in a two-dimensional space, whereas the non-edge pixels
(usually the black pixels) are simply ignored.

The segmentation comparison methodology presented by Correa-Tome
et al. [18] uses a standard evaluation technique described by van Rijsbergen
[82] for information retrieval: the Precision and Recall graphs. This tech-
nique was previously used by Martin et al. [60] to compare the performance
of edge detectors, using a collection of human-made references [59]. The
Precision measure is proportional to the number of edge pixels correctly de-
tected, whereas Recall is proportional to the number of edge pixels actually
detected. In this study, Recall is used as a metric for the similarity between
edge images, whilst Precision is not used.

Given two images with such characteristics, i.e. an image to test and a
template, our methodology compares them by determining the number of
edge pixels in the image to test that are present in the template. Doing this
by means of simple overlapping performs poorly, since small edge localization
errors are expected. Instead, our method inspects a neighborhood defined
by a tolerance radius around a given pixel, looking for possible matchings.
Then, a bipartite graph is built, where the two sets of nodes represent the
two sets of points from each image, and the edges of the graph describe the
relationships among possible matching edge pixels.

The maximum number of edge pixels that can be paired between the
two images is determined by obtaining the maximum cardinality matching
(MCM) of the bipartite graph. This value is consistent independently of the
order in which the data are evaluated, and provides completeness accuracy to
the metric. Obtaining the MCM value is often time consuming, however, the
bipartite graph generated from the point sets has the characteristic of being
sparse. The MCM can be obtained in near-linear time for sparse graphs,
using the algorithm proposed by Hopcroft and Karp [33]. The Recall met-
ric is directly obtained from the computed MCM value and, in this work,
the resulting metric is named the Maximum Cardinality Similarity Metric
(MCSM).

In our experiments, a comparison between the MCSM and the PHD is
made both in detection accuracy and in computing time. We found that our
MCSM methodology obtains similar results than the PHD for typical image
registration and template matching applications. Nevertheless, the results
show that unlike the PHD, the MCSM methodology accurately reflects the
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completeness of the evaluated shape under noise conditions. Regarding to
the algorithmic complexity, we observe a significant decrease of the computer
time required by our MCSM methodology compared with the time required
by the PHD.

2.2 Methodology

In this section, our proposed MCSM methodology is described. The formula-
tion for the different Hausdorff distances used in this study is also presented,
along with a definition of the PHD to be used as a shape similarity metric.

2.2.1 Maximum cardinality similarity metric (MCSM)

This section describes the methodology used to calculate the MCSM. The
MCSM is an adaptation of the evaluation methodology proposed by Correa-
Tome et al. [18], to use their methodology as a similarity metric.

Let A be an edge image under test, and let B be an edge image used as a
reference template. For each edge pixel in B, a corresponding neighborhood
of radius t in A is inspected looking for edge pixels. At this point, any edge
pixel in B that has no matching edge pixels in A is simply ignored. The
edge pixels in B that have one or more matching edge pixels in A are used
to build a bipartite graph.

The bipartite graph is built as follows. Let U and V be the two sets
of nodes that constitute the graph. The set U consists of n nodes, corre-
sponding to the n edge pixels from B that have one or more matchings in
A. Meanwhile, the set V consists of m nodes that correspond to those edge
pixels in A matched by one or more edge pixels from B. The edges of the
bipartite graph denote the matching nodes from U to V . It is important to
note that the nodes in V that can be paired with nodes in U are restricted
by the tolerance radius t. Because of this, the bipartite graph generated is
always sparse, a property that may be exploited to reduce the computing
time.

Finding the MCM value of the bipartite graph is equivalent to find the
number of edge pixels in B that have a corresponding pixel in A, i.e. the
number of correctly detected edge pixels or true positives (TP ). The algo-
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rithm proposed by Hopcroft and Karp [33] is used in this study to obtain the
MCM value. Belongie et al. [8] present a similar optimization method, using
the algorithm proposed by Jonker and Volgenant [45]. Nevertheless, since
the Hopcroft–Karp algorithm exhibits a near-linear computational complex-
ity O(n logm) for sparse graphs, it is more convenient to use this algorithm
instead.

The Hopcroft–Karp algorithm starts by obtaining an initial configuration
for the bipartite graph. Each node ui ∈ U is inspected looking for a free node
vj ∈ V linked to this node by an edge in the bipartite graph. If found, the
node vj is then associated to ui. At this stage, the node selection method is
not important. After the initialization stage, a tree is built for every node
uk ∈ U that is left unpaired. The tree is built following the association chains
that start at uk and alternate between nodes from U and V . Each node, either
in U or V , can be included only once in the tree built for uk. When it is not
possible to add more nodes to the tree, a breadth-first search is used to find
the first free node in V (i.e. a node that has not been previously assigned to
any node in U). The path in the tree, from the root to the free node, shows
how the graph edges need to be reassigned to increment the overall number
of node assignations by one. This is called an augmenting path. The process
continues until all the unpaired nodes uk ∈ U are evaluated. At the end of
this process, the number of paired nodes is maximum. This number is the
MCM value.

The MCM value obtained by the described procedure equals to TP . The
Recall measure R is used here as the maximum cardinality similarity metric
(MCSM), whilst the Precision measure P is not used for this application.
Recall is defined as shown in Equation 2.1,

R =
TP

TP + FN
, (2.1)

where FN is the number of missing edge pixels or false negatives. This value
may be obtained using FN = ne − TP , where ne is the total number of
edge pixels in B. Nevertheless, in this study the normalized Recall met-
ric (Equation 2.2) proposed by Correa-Tome et al. [18], is used instead of
Equation 2.1,
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Rn =

(

N

N − TP

)(

TP

TP + FN
− TP

N

)

, (2.2)

having N as the total number of pixels in the image. The Rn measure is
preferred because, whilst R ∈ [TP/N, 1], Rn ∈ [0, 1] and is proportional to
the amount of points actually detected. Then, the normalized Recall metric
Rn is taken instead of R as the MCSM proposed in this study.

2.2.2 Hausdorff distances

In this section, the different Hausdorff distances related to this study are
described. The PHD is defined in function of a neighbourhood distance,
analogous to the tolerance radius of the MCSM metric.

Given two sets of points, X and Y , the HD between these sets is calculated
as shown in Equation 2.3,

H(X, Y ) = max
(

h(X, Y ), h(Y,X)
)

, (2.3)

where the function h, shown in Equation 2.4, is the directed Hausdorff dis-
tance, calculated from a set X to a set Y ,

h(X, Y ) = max
x∈X

min
y∈Y

||x− y||. (2.4)

Let K represent the K-th element of a set, ranked from the shortest to
the largest distance. Then, the partial Hausdorff distance is defined as shown
in Equation 2.5,

hK = hK(X, Y ) = K
y∈Y

min
x∈X

||x− y||, (2.5)

meaning that h0 ≤ h1 ≤ . . . ≤ hK ≤ . . . ≤ hq. Having q as the number of
elements in the set, then hq = h(X, Y ).

Let d be a distance that defines the radius of a neighborhood for a given
pixel in the binary map. Then, the K value used in Equation 2.5 is de-
termined in function of d, whereas giving the number of K points below
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the distance d. Taking this into account, the PHD may be used as a shape
similarity metric by calculating the quotient K/q.

Both, the K/q quotient and the Rn value, represent the proportion of
hits in relation to the number of points evaluated, and are bounded in the
range [0, 1]. Moreover, the tolerance radius t from the MCSM metric and the
neighborhood distance d from the PHD accomplish the same purpose, i.e. to
tolerate small point localization errors. These similarities allow both metrics
to be easily compared in a set of tests.

2.3 Tests and Results

In this section, the results from different tests are presented. The goal of
these tests is to compare the properties of the MCSM and to determine if it
may be used as a replacement of the PHD. For this, the MCSM requires to
be robust against occlusion, partial edges, edge localization errors, and noise.
Furthermore, if the MCSM is to be used as an alternative to the PHD, it
must provide some advantages. Our main claim is that the MCSM can be
computed in a near-linear time, surpassing that of the PHD. To ascertain
this claim, a computing time test is discussed. Finally, a test is presented to
compare the MCSM and the PHD for template matching applications.

2.3.1 Measurement of occluded and partial edges

One of the main advantages of the HD and PHD used in image processing
applications is their robustness against partial or occluded edges. In this
section, a test to compare the MCSM and the PHD in this regard is described.

Because both, the MCSM and the PHD are calculated for a neighborhood
around a certain edge pixel of a given edge image, the shape of the object in
the edge image is negligible [18]. Firstly, the shape of a circle was chosen to
build a first set of test images, because for a human being it results easier
to notice the proportion of completeness of a circle, compared to that of an
irregular shape. In this test, partial circle shapes are compared against the
complete circle shape (taken here as a template) using both, the MCSM and
the PHD. The set of images for this test consists of circle arcs of length s,
varying from s = 0 to s = 2πr, in steps of ∆s = rθ = 2πr/c, where r is the
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radius of the circle, θ is the arc angle (in radians) and c is the number of
images in the set. Figure 2.1a shows examples from this test set, consisting
of a total of c = 100 images.

The results obtained from this test show no significant differences between
the MCSM and PHD measures. Furthermore, both measures accurately indi-
cate the completeness of the shape in the range [0, 1]. The Figure 2.2a shows
the similarity measurements obtained using the MCSM and PHD method-
ologies with the image set containing partial circle edges (Figure 2.1a). The
abscissa shows the actual edge proportion and the ordinate shows the de-
tected edge completeness.

This test was also conducted on a set of 17 edge images obtained after
applying the Canny edge detector [11] on real images taken from the Berkeley
Segmentation Dataset and Benchmark [59], an image database consisting of
300 natural images [3]. For each edge image in the set, 51 different versions
with subtracted regions of edges were obtained. The proportion of missing
edges in each image version is controlled and known in advance. The pro-
portion of missing edge blocks varies from zero (the full edge image) to all
the edges (a plain image) in steps that remove around the 2% of the edges
in each version. Figures 2.1b and 2.1c show example images from this test
set and some of their variations.

The results show that both, the MCSM and the PHD methodologies
obtain similar results, and are close to the expected completeness value.
When using real images, the results from each one of the images in the set
show no appreciable differences among them. Because of this, only the mean
results are shown in Figure 2.2b.

The results from the tests presented in this section show that the MCSM
and the PHD methodologies obtain similar results, for partial or occluded
edges without noise. Because of this, both metrics may be used interchange-
ably in a given application. Moreover, under the aforementioned conditions,
both metrics are proportional to the completeness of the shape.

2.3.2 Measurement of edges under noisy conditions

Another advantage of the HD and PHD when used in image processing ap-
plications is their robustness against noise. In this section, several edge
images containing edge noise (i.e. missing edge pixels) are compared with a
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Figure 2.1. Edge image examples with partial occlusion from the circle test
set (a), and from the test set of real images (b, c).

template, using both the MCSM and the PHD. The circle shape previously
discussed was also used to build a set of images for this test. This set of
edge images consists of a circle with a proportion p of missing edge pixels
at randomly chosen locations along the circular shape. The proportion of
missing edge pixels varies from p = 0 to p = 1, in steps of ∆p = 1/c between
consecutive images. Figure 2.3a shows some examples from this test set of
c = 100 images.

Figure 2.4a shows the similarity measure for the MCSM and the PHD,
when edge pixels are randomly eliminated from the circle shape (Figure 2.3a).
The abscissa shows the true edge proportion and the ordinate shows the
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Figure 2.2. Comparison of the partial occlusion test results for circle shapes
(a), and for mean results of real images (b).

detected completeness. The PHD plot shows a curve approximation to the
mean results.

The results show a clear difference between the MCSM and PHD.Whereas
the MCSM correctly detects edge completeness, the PHD shows a significant
difference between the measured and the real completeness. This differ-
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ence occurs because the PHD methodology is unresponsive to single or small
groups of missing edge pixels. Nevertheless, the MCSM methodology per-
forms a one-to-one assignation of points, being able to detect small changes.

This test was also conducted on real images. The same set of edge images
described in Section 2.3.1 was used here. For each one of the 17 edge images
in the set, 100 versions with different proportion of randomly eliminated edge
pixels were generated. The proportion of eliminated edges varies from 0%
(the original image) to 100% (a plain image). Figures 2.3b and 2.3c show
some examples from this test set.

Figure 2.3. Edge image examples with noise from the circle test set (a),
and from the test set of real images (b, c).
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The results show that, whilst the MCSM obtains an accurate measure
of the edge completeness, the PHD presents a significant loss of accuracy
at determining the completeness of a shape under noise conditions. When
using real images, the results from each one of the 17 real images show no
appreciable differences among them. Because of this, only the mean results
are shown in Figure 2.4b.

Figure 2.4. Comparison of the noise test results for circle shapes (a), and
for mean results of real images (b).
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The results from this test show that the PHD has certain degree of in-
sensitivity to small missing edges. Nevertheless, the obtained MCSM value
is sensitive to as few as one missing edge pixel. This property may be useful
to accurately measure the proportion of noise in an edge image.

2.3.3 Distortion tolerance and distortion measurement

One of the main reasons to use PHD in edge images is because of its robust-
ness against small edge localization errors. The proposed MCSM exhibits
the same tolerance, and the conducted tests show similar results for both
methodologies. The tolerance is defined in the algorithm as a radius whose
distance is given in pixels. As defined in Section 2.2, the tolerance is t for
MCSM, and d for PHD.

Figure 2.5 shows some examples from a set of images of a grid pattern with
different degrees of distortion. The images are from the PSU Near-Regular
Texture Database [55].

The image without distortion (Figure 2.5a) is used as the template, and
is compared with the distorted images using different values of t and d. The
results are shown in Figure 2.6a for the MCSM, and in Figure 2.6b for the
PHD.

Even though the measures obtained using the MCSM and the PHD are
not equivalent, the results show a similar behavior. If the variable t or d is
increased, the tolerance against distortion augments in a similar proportion.

Instead of using the tolerance variables t and d to define a distortion
tolerance threshold, they may be used the other way around to detect the
degree of distortion in a given image. The results from Figures 2.6a and 2.6b
show that the image a in Figure 2.5 has no distortion, b has a distortion
radius of about 1 pixel, whereas c is about 2 pixels, d about 3 pixels, and e
about 4 pixels. The radius of distortion for the image f is not clear from the
figures, nevertheless the experimental results show that the radius is about
5 pixels. Furthermore, the results show that the distortion radius obtained
using the MCSM (t) or the PHD (d) are equivalent.
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Figure 2.5. Example images showing a pattern with different degrees of
distortion, from no distortion (a) to a large distortion (f).

2.3.4 Processing time

Regarding to the algorithmic complexity of the MCSM and the PHD meth-
ods, a performance test is described in this section. This test set consists
of images with a different number of points to be evaluated using both, the
proposed MCSM methodology and the PHD. The test is made to determine
the time required by each algorithm when calculating the similarity measure
between two sets of n points (i.e. edge pixels), for 0 < n ≤ 50 × 103. The
actual location of the points is irrelevant for the test.

Figure 2.7 shows the processing time required by each methodology as
the number of points increases. An Intel Core i3–2120 computer at 3.30 GHz
and 4 GB of RAM was used to obtain this graph. Even though the time
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Figure 2.6. Distortion tolerance test results for the MCSM (a), and the
PDF evaluation (b), using t, d = 0, 1, 2, 3, 4.

spent is dependent of the hardware used, the algorithmic complexity growth
shown in the Figure 2.7 is independent of it.

The results show a better time performance for the MCSM compared with
the PHD. For sets with few points, the time required to compute each metric
is close. Nevertheless, as the number of points increases, the time required for
the PHD methodology increases exponentially O(n2), while our methodology
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Figure 2.7. Processing time comparison between the MCSM and the PHD.

remains near-linear O(n log n). This feature makes the proposed MCSM
suitable as a replacement of the PHD for demanding real-time applications.

To give an example, the MCSMmethodology requires on average 20.92 ms
to calculate Rn for an image of 481 × 321 pixels (from the real image test
set), containing 13 720 edge pixels, on an Intel Core i3–2120 computer at
3.30 GHz and 4 GB of RAM. Nevertheless, the PHD methodology requires
2.44 s to calculate hK for the same image on the same off-the-shelf computer.

2.3.5 Template matching

Template matching is a common use for the HD and PHD in edge image
processing applications. As mentioned in Section 2.1, the HD is used in
such applications because it is robust against the errors commonly found in
edge images. To use our MCSM methodology as a HD or PHD replacement,
the results obtained for template matching tasks should be similar to those
obtained by the HD.

In a series of tests, the MCSM and PHD methods are used as similarity
metrics for template matching. The images used for testing are also from
the Berkeley Segmentation Dataset and Benchmark [3]. Each one of the
300 natural images in the dataset has from five to ten segmentations made
by humans. The required templates were obtained from those human-made
segmentations.
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For each image in the test set, the edge detection algorithm proposed
by Canny [11] is applied to a gray-scale version of the natural image. The
resulting edge image is registered, comparing the template at each pixel lo-
cation using both, MCSM and PHD. The maximum value obtained is taken
as the location of the template in the image. The tests show similar results
for both methodologies, with variations of one pixel, in average.

Figures 2.8 and 2.9 show examples from template matching tests. The
top–left image of each figure (a) shows the template to look for and the nat-
ural image to look into. The top–right image (b) shows the image obtained
using the Canny edge detector. The bottom–left image (c) shows the tem-
plate location found using MCSM and the bottom–right image (d) shows the
template location found using PHD.

Figure 2.8. Template matching test showing the original and template
images (a), the edge image (b), the MCSM detection (c), and the PHD
detection (d).

Even though small discrepancies are expected from the results, the exper-
iments show that MCSM may be actually used as a replacement of the PHD
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Figure 2.9. Another template matching test showing the original and tem-
plate images (a), the edge image (b), the MCSM detection (c), and the PHD
detection (d).

to find the localization of templates in edge images. The MCSMmethodology
is also robust against the same problems found in edge images. Moreover,
the low algorithmic complexity of the MCSM offers a significant advantage
over the PHD in execution, for applications where the processing time is a
crucial factor.



Chapter 3

Integral split and merge
segmentation

In this chapter, a fast image segmentation methodology is presented. This
methodology uses a split-and-merge segmentation approach, combined with
integral images to reduce the computing time required by the method. A
general overview of the proposed segmentation methodology is presented in
the following Section 3.1. Then, the details about the implementation of this
methodology are discussed in Section 3.2. In order to evaluate the perfor-
mance of our segmentation methodology, a series of tests were performed.
These tests and the results obtained from them are discussed in Section 3.3.

3.1 Introduction

The segmentation of images is a common procedure in image analysis ap-
plications. This procedure is the first step in many processes meant to ex-
tract useful information from scenes. It consists in partitioning the image
into different disjoint regions, that are homogeneous for one or more fea-
tures computed from the image. Those regions are assumed to correspond
to meaningful parts of the objects in the scene, regions that are easier to
analyze. In their survey, Vantaram and Saber [84] classify the segmentation
methodologies in three main classes: spatially blind, spatially guided, and
miscellaneous methods.

29
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As their name suggest, the segmentation of images using the spatially
blind methods is not guided by the spatial relationships of the pixels in
the image. These methods include approaches using clustering or histogram
thresholding. The spatially blind methods have the advantage of being easy
to implement, not requiring any a priori information. However, the number
of clusters to use for clustering is required to be determined in advance. This
has proven to be a challenging task. Moreover, the histogram thresholding
methods have problems with low-contrast images, and are difficult to use in
color images.

The segmentation of images using spatially guided methods, is directed by
the relationships between pixels in an image region. These methods group to-
gether regions that are homogeneous regarding to a given image feature. The
spatially guided methods are further subdivided into region-based, energy-
based, and contour-based methods. The region-based methods include pro-
cedures such as the growing, the splitting and the merging of regions. Some
algorithms from this category include the J-segmentation algorithm, pro-
posed by Deng and Manjunath [21], the gradient segmentation algorithm,
proposed by Garcia Ugarriza et al. [79], and a multiresolution extension of
the gradient segmentation algorithm, proposed by Vantaram and Saber [85],
among others. Regarding to the energy-based methods, they attempt to min-
imize cost functions that model regions in the image. Those cost functions
may be contour or region based functions. The regions covered by the func-
tions evolve until a given energy model is minimized. Some algorithms in this
category include the active contours (a.k.a. snakes), first proposed by Kass
et al. [46] and variants, such as the fast active contours algorithm proposed by
Chan and Vese [13] or the active contours without edges, proposed by Van-
taram and Saber [83]. Lastly, the contour-based methods consist of different
variants of the watershed algorithm. This algorithm considers a gray-scale
image as a topographic relief, where the intensity of the pixels determine the
corresponding height of that particular zone. The relief is then flooded in a
simulation, the water flows to local minima and forms basins, corresponding
to different regions in the image. Some examples of these methods include
the work of Gao et al. [25], where watersheds are used to segment color im-
ages, the study of Hill et al. [31], that uses a texture gradient to partition
textured regions using watershed, and the method by Kim and Kim [47],
where a multiresolution watershed segmentation using wavelets is presented.
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In this study, we propose a methodology called Integral Split and Merge
(ISM) segmentation. This methodology is a region-based segmentation algo-
rithm, where the split-and-merge segmentation, and an image representation
called integral image are combined, to achieve two main goals: to obtain ac-
ceptable segmentation outcomes, and to attain a computational complexity
low enough to use the method in real-time applications (i.e. 15 fps or more).
The split-and-merge segmentation was proposed by Horowitz and Pavlidis
[35, 34] back in 1974. It consists in recursively partitioning an image into
homogeneous parts, and then merging those parts into bigger homogeneous
regions. Our ISM methodology uses the integral images to improve the com-
puting time performance. The integral image representation was first used in
the object recognition field by Viola and Jones [87], to achieve a fast feature
evaluation for real-time face detection applications.

The proposed ISM method works over intensity images, where the pixels
in the homogeneous regions have similar intensity values. The method con-
sists of two main parts: the splitting and the merging steps. The splitting
process divides the image into homogeneous regions. This process is per-
formed in a single step, using a quad-tree search. The image is partitioned
into regions (i.e. quads) that are evaluated for homogeneity. Because de-
termining the homogeneity of a region is computationally expensive, we use
the integral images to improve the time performance. On the other hand,
the merging process combines the homogeneous regions obtained from the
splitting process, into bigger areas. We propose a merge criterion that is
performed in an efficient time, and exhibits three main properties. Firstly,
it assigns different labels to spatially disconnected regions, independently of
their similitude. This is equivalent to perform a connected-component anal-
ysis. Secondly, our method is able to follow gradients in image areas showing
this property, and to group them into single regions. This process is similar
to that performed by region-growing methods. Lastly, our merging proce-
dure is able to automatically determine the number of disjoint regions in the
segmentation.

Additionally to the ISM split and merge processes, a small-region elimi-
nation procedure is presented. This procedure is used to improve the visual
appeal of image segmentations, if required. This step first removes the small
regions obtained from the ISM segmentation. Then, the removed pixels are
reassigned to bigger regions, using a region growing process. The tests per-
formed show that the small regions have no significant impact in the overall
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evaluation of a segmentation, and therefore this step may be omitted, if
necessary.

The ISM methodology was tested to ascertain its performance in seg-
mentation accuracy and computing time. The tests were performed on a
collection of natural images, where texture patterns are abundant. For this
kind of images, it is better to use texture information for the segmentation.
Different image features (e.g. texture descriptors) may be used to obtain
an intensity map that shows different homogeneity properties. In this work,
we use a single texture descriptor: the standard deviation (SD) map. We
calculate the SD map in a preprocessing stage. This preprocessing trans-
forms texture features into intensity values, that are suitable to be used by
our ISM methodology. The SD image describes texture as intensity levels,
where each pixel in the SD image is the standard deviation of the intensity
values in a neighborhood, centered at the given pixel position in the original
image. The ISM methodology used on SD images produces segmentations
where the regions are uniform, regarding to the standard deviation of their
values. Even though there may be better texture descriptors than the SD
images, their study is beyond the scope of this work. Here, the SD images are
used only to present the ISM methodology. However, despite its simplicity,
the SD images have obtained good results in segmentation applications, as
in the work of Lizarraga-Morales et al. [56].

The results obtained were evaluated using the Normalized Probabilistic
Random (NPR) index. The NPR index is a robust methodology, developed
by Unnikrishnan et al. [81, 80] to evaluate the quality of image segmentations.
The image segmentations obtained from a given algorithm are normally com-
pared against one or more human-made references. To this end, we use the
Berkeley Segmentation Dataset and Benchmark (BSDS) [59], a collection
of 300 natural images and several human-made segmentation references for
each image. The BSDS has been previously used along with the NPR index.
An example is the work of Pantofaru and Hebert [68], where the BSDS and
the NPR index are used to evaluate image segmentations, obtained using
mean-shift, the efficient graph-based segmentation proposed by Felzenszwalb
and Huttenlocher [23], and an hybrid method that combines both, in order
to determine if the hybrid method improves the segmentation quality. The
NPR index and the BSDS were also used by Vantaram and Saber [84] to
evaluate the segmentation quality of eleven state-of-the-art algorithms. In
this study, we compare in equal terms the results obtained using our ISM
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methodology and the results obtained from the eleven algorithms, reported
by Vantaram and Saber [84].

The results obtained from the tests performed show that our ISM method-
ology obtains a similar segmentation quality than the other state-of-the-art
algorithms, used for comparison purposes. However, whilst the other meth-
ods combine both color and texture features, our ISM methodology only
requires a single texture feature (i.e. the SD image) to achieve similar re-
sults. Furthermore, our tests show that, using integral images to calculate
the statistics required by the split and merge segmentation, improves the
execution time of the method. We have found that the ISM methodology is
efficiently executed in a piecewise linear time. These contributions may be
advantageous for real time segmentation applications.

3.2 Methodology

In this section, the proposed split and merge segmentation methodology is
described. The section starts discussing the integral images, adapted to this
particular application. Then, the splitting and merging procedures of our
methodology are described, along with their implementation details. Addi-
tionally, two more procedures that may be used after the segmentation are
discussed. The first one is a procedure that declassifies small regions, and
the second one is a region growing procedure, that assigns the declassified
pixels to the remaining classes.

3.2.1 Integral images

The proposed ISM methodology makes use of the integral images to improve
the time required to obtain an image segmentation. This procedure is essen-
tial, because it allows the ISM method to be executed in real time.

The integral images [87] (a.k.a. summed area tables) are used to efficiently
compute sums of pixel intensities in square regions of an image. The time
required to compute such sums is constant, and does not depend on the
region size. Moreover, the integral image may be computed in linear time.

This section describes the method to compute the integral image, and to
obtain the area sums. These sums are used to compute the mean intensity,
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and the variance of the intensities in an image region. These statistics are
used by our splitting process to improve the execution time.

The summed area table

The integral image, or summed area table, is obtained from the original
image, and has the same dimensions. This image representation is used to
efficiently compute the sum of intensities in a square area of the image.

Let I be an image consisting of W × H pixels. Also, consider the pixel
(0, 0) to be at the top–left corner of the image, and the pixel (W − 1, H − 1)
at the bottom–right corner. The pixel at column i and row j in I is denoted
by I(i, j). The integral image S consisting of W × H cells, is calculated as
shown in Equation 3.1. The cell at column i and row j in S is denoted by
S(i, j). Each cell S(i, j) is the sum of all the intensities above and to the left
of its corresponding image pixel I(i, j), including itself. The computation
of S(i, j) may be optimized using the data already computed, as shown in
Equation 3.2.

S(i, j) =
∑

i′≤i
j′≤j

I(i′, j′) (3.1)

S(i, j) = I(i, j) + S(i− 1, j) + S(i, j − 1)

− S(i− 1, j − 1)
(3.2)

The function S(i, j) = 0 for the values i, j < 0. Notice that using Equa-
tion 3.2, the integral image is obtained in linear time O(n).

Sum of intensities in a region

The integral image may be used to compute the sum of pixel intensities of
a square region of arbitrary size. The time required to compute this sum is
constant, and it is independent of the size of the area involved.

Consider an square area defined by a = (x0, y0), b = (x1, y0), c = (x0, y1)
and d = (x1, y1), where x0, y0, x1, and y1 are integer numbers representing
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the coordinates of the region in the image (see Figure 3.1). Then, the sum
of the pixel intensities (s) in the region is obtained using Equation 3.3.

s = S(x1, y1)− S(x0 − 1, y1)− S(x1, y0 − 1)

+ S(x0 − 1, y0 − 1)
(3.3)

The function S(i, j) = 0 for the values i, j < 0. Notice that the compu-
tation of the Equation 3.3 is obtained in constant time O(1).

Figure 3.1. Area to sum in a summed area table.

Fast computation of statistics

In their article, Bradley and Roth [9] use the integral image to compute the
mean intensity of a rectangular region of an image. In this work, a similar
approach is used to calculate the mean. Additionally, we also calculate the
variance of the pixel intensities, in square regions of arbitrary size, by using
statistical moments.

First, consider the Equation 3.4, where sr is the sum of all the intensity
values, raised to the power of r, in a region defined by x0, y0, x1, and y1. The
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mean µ and variance σ2 of the region data may be computed in function of
sr, using Equations 3.5 and 3.6, respectively.

sr =

y1
∑

j=y0

x1
∑

i=x0

I(r)(i, j) (3.4)

µ =
s1
N

(3.5)

σ2 =
s2
N

−
(s1
N

)2

(3.6)

where N is the number of pixels in the defined region. Notice that the sum sr
may be efficiently computed using integral images. First, the summed area
table of an image with intensities raised to the power of r is calculated as
shown in Equation 3.7.

Sr(i, j) = I(r)(i, j) + Sr(i− 1, j) + Sr(i, j − 1)

− Sr(i− 1, j − 1)
(3.7)

This operation is also performed in linear time O(n). Then, the sum
of intensities sr is calculated using the summed area table Sr, as shown in
Equation 3.8.

sr = Sr(x1, y1)− Sr(x0 − 1, y1)− Sr(x1, y0 − 1)

+ Sr(x0 − 1, y0 − 1)
(3.8)

The function Sr(i, j) = 0 for the values i, j < 0. The computation of
Equation 3.8 is also performed in constant time O(1).

Optimization details

The integral images discussed in this section are intended to be used for im-
age segmentation, and because the intensity values of the image pixels are
integer (in [0, 255]), an integer integral image may be used. This data repre-
sentation may be advantageous, because the integer arithmetic is faster than
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the floating point arithmetic. Thus, the segmentation methodology discussed
in this work may be fully implemented using only integer arithmetic.

Even though the mean and variance values obtained from pixel intensities
may be real numbers, an integer approximation is acceptable. Therefore, the
division operations required to calculate the mean and the variance may be
performed using integer arithmetic alone. Moreover, the division operations
required by the splitting process described in Section 3.2.3, may be replaced
by bit shifts.

3.2.2 Image segmentation

The image segmentation is formally defined as follows [67]. Let F be the
set of all the pixels in a given image. Then, the image segmentation is the
partitioning of F into a set of connected regions {Q1, Q2, . . . , Qk} that satisfy
the Equations 3.9 and 3.10.

k
⋃

i=1

Qi = F (3.9)

Qi ∩Qj = ∅, i 6= j (3.10)

Also, let P ( ) be a homogeneity predicate, defined on groups of connected
pixels. Then, P (Qi) = true for all segmented regions Qi, and P (Qi ∪Qj) =
false for i 6= j. A region is homogeneous when the values of its pixels are
close to each other, as described in the next section.

3.2.3 Splitting process

The first step of the proposed segmentation methodology is a splitting pro-
cess. This process divides the image into regions of homogeneous intensity.
First, the image is divided in quads, and each quad is tested for homogeneity.
If the region is not homogeneous, that region is further subdivided in quads,
and the process is repeated until the homogeneity condition is reached, or
until a stop condition is met.

A region homogeneous in intensity is a region in the image that has the
same intensity for all its pixels. In practice, this situation rarely occurs.
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Small differences between pixel intensities are expected in perceptually ho-
mogeneous regions. Therefore, a certain tolerance to intensity variation may
be allowed for homogeneous regions. The maximum intensity variation al-
lowed is determined by a variance threshold (σ2

T ), that is required to be
calculated for each image. To that end, an automatic method to detect the
variance threshold is also discussed in this section.

Quad-tree building

Before starting the subdivision process, the original image should be slightly
modified in order to make the subdivision easier. First, it results more con-
venient if the image is square, with sides that are powers of two. This assures
the image to be divisible at every level of the tree, and the divided regions
to be always powers of two.

If the original image does not meet the aforementioned size requirements,
the image canvas is enlarged, adding empty pixels to the right and to the
bottom of the image, until obtaining an image of 2ℓ × 2ℓ pixels, where ℓ is
a positive integer value such that 2ℓ−1 < max(W,H) ≤ 2ℓ. Additionally, it
is recommended to assign a special value to the empty pixels. This special
value has the property of being always different from any other pixel intensity,
regardless of the variance threshold (σ2

T ) used. This way, the empty pixels
can only be grouped together, and the space added by the canvas enlargement
does not interfere with the segmentation process.

Subdivision process

The subdivision process starts with the whole image, after the canvas en-
largement step. Being the side length of the image equals to 2ℓ, consider the
number of levels in the quad three to be ℓ.

The homogeneity of the level ℓ of the image is determined by obtaining
the variance of the region (in this case the variance of the whole image), and
comparing it against the variance threshold σ2

T . The variance of the region is
efficiently computed by our ISM methodology using integral images, applying
the Equation 3.6. Notice that, for this equation, N = (2ℓ)2 = 22ℓ, a number
that is also a power of two. Therefore, the variance calculation requires no
division operations, a bit shift may be used instead.
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To decide if the region (in this case the whole image) is homogeneous,
its variance should be below the variance threshold level σ2

T . Otherwise, the
region is considered non-homogeneous, and it is subdivided into four square
regions of side 2ℓ−1.

The process is repeated for each one of the four regions. If a region
results to be non-homogeneous, the region is further subdivided. The process
is repeated until the homogeneity condition is met, or the level ℓ = 0 is
reached. At this point, all the image is divided into different regions that are
homogeneous in intensity.

Additionally, the process may be initiated or finalized at arbitrary levels.
For example, the splitting process may start at level ℓ. However, until the
level ℓ− α is reached, all the regions are considered non-homogeneous. This
consideration is used to avoid segmentation errors produced by big regions,
containing small areas that should be assigned to a different class. If the
mean intensity of such region is below σ2

T , the error may not be detected.
However, as mentioned by Ojala and Pietikäinen [65], smaller initial regions
are easily merged together again by the merging process. In this work, we use
a maximum region of 26×26 pixels to avoid this kind of errors. On the other
hand, the process may be also finalized before the level ℓ = 0 is reached. This
may speed up the subdivision process, because the lower levels in the quad
three have more regions to process than the upper levels. However, doing
this increases the error in the detection of the boundaries between regions,
reducing the quality of the segmentation. For this reason, in this work we
use ℓ = 0.

In our implementation we use a data structure called node, to store the
information of a given homogeneous region. This information is used to
further reduce the operations required by the splitting process. The nodes
are stored in a vector as soon as the homogeneous regions are found. Because
the quad tree is explored using a breadth-first search, the resulting vector is
sorted. This is required by the merging process.

Automatic variance threshold selection

It results inconvenient to define a constant variance threshold σ2
T for all

images, because that optimum variance threshold is dependent on the image
under segmentation. In their article, Garcia Ugarriza et al. [79] propose an
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automatic approach, called adaptive gradient thresholds, that initializes the
seeds of their region growing segmentation methodology. We adapted this
methodology to determine the best value of σ2

T from a gradient map obtained
from a given image. This process is fast and should be performed for every
image before starting the segmentation. The methodology adapted from the
work of Garcia Ugarriza et al. [79] is discussed in this section.

An estimation of σ2
T may be obtained using the next procedure. First,

a gradient image is obtained from the original image, assumed to have only
one channel. The image consists of K = W · H pixels of intensity U =
{u1, u2, u3, . . . , uK}, whilst the gradient image is made of K = W ·H values
G = {g1, g2, g3, . . . , gK}, for an image of W × H pixels, where each k index
from the uk and gk values, corresponds to the image position k = Wj + i.

The value for each pixel in the gradient image G is defined as g =
√
λ,

where λ is obtained using the Equation 3.11 presented by Garcia Ugarriza
et al. [79].

λ = 1
2

(

q + h+

√

(

q + h
)2 − 4

(

qh− t2
)

)

. (3.11)

The variables q, t and h are defined in Equations 3.12, 3.13 and 3.14,
respectively. The variables x and y are the spatial coordinates of the image.

q =

(

du

dx

)2

(3.12)

t =

(

du

dx
· du
dy

)

(3.13)

h =

(

du

dy

)2

(3.14)

The differential terms of Equations 3.12 to 3.14 are calculated in function
of image intensity values as shown in Equations 3.15 and 3.16.

du

dx
= I(i, j)− I(i− 1, j) (3.15)

du

dy
= I(i, j)− I(i, j − 1) (3.16)
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After obtaining the gradient image G, its histogram is calculated, and
the threshold variance σ2

T is obtained from this histogram. It is required
to find a threshold p in the histogram where a given percentile is reached.
For convenience, the threshold p is normalized in [0, 1] and not in [0, 100] as
is the percentile, but reflect the same proportion. The threshold p signals
the maximum intensity deviation that should be considered as homogeneous,
which is equivalent to σT (see Figure 3.2). Even though p is also a threshold
value, its behavior is different from σ2

T . Whilst σ2
T changes from image to

image, p is a constant that may be experimentally determined. Garcia Ugar-
riza et al. [79] reported that the optimum value for their adaptive gradient
threshold is near 0.8. We experimentally obtained a similar value for the gra-
dient threshold p = 0.82, the protocol used for this experiment is discussed
in Section 3.3.3.

Figure 3.2. Histogram of the gradient image showing the p threshold level.

3.2.4 Merging process

The ISM merging process combines the homogeneous regions, obtained from
the splitting process, into bigger regions that are assigned to a class. The
regions in a class should be homogeneous in intensity, and be spatially con-
nected. The ISM merging methodology proposed here has three main char-
acteristics: the number of classes is automatically determined for each im-
age, smooth gradients are considered as homogeneous regions, and different
classes are assigned for disconnected regions. The details of our ISM merging
algorithm are discussed next.
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Conditions and cases

The homogeneous regions identified by the splitting process (nodes) may
be merged together if they fulfill the next merging conditions. Firstly, an
unclassified region is always merged to a classified region. Secondly, the
unclassified region should be equal in size or smaller than the region to which
it is going to be merged to. Thirdly, the difference of the mean intensities
between the classified and the unclassified regions should not be greater than
σT . Lastly, the regions must be adjacent, in the vertical and horizontal
directions only.

If a region is not classified and has no classified neighbors that fulfill
the merging conditions, a new class is created for that region. Additionally,
it may happen for an unclassified region to have more than one adjacent
region that fulfills the aforementioned conditions. There may be up to four
suitable neighbors for each unclassified region, because of the second merging
condition. If those regions share the same class label, the assignment of the
region to that class is straightforward. However, if the adjacent regions have
different class labels, those labels need to be reassigned to a single class.

Class assignment

Figure 3.3. Graphic representation of the node (ni) and group (gw) struc-
tures. The arrows depict pointers to structures.

At the beginning of the merging process, there is no class assigned to
any region. In this case, and whenever a region has no neighbors that meet
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any of the merging conditions, a group structure (gw) is generated. All the
neighboring nodes (ni) that fulfill the merging conditions, are pointed to a
group structure (see Figure 3.3). This structure keeps a record of the sum of
the pixel intensities from all the nodes.

Whenever a new node is created, a new class (Cj) structure is also defined,
and the group is pointed to that class structure. The class contains a unique
label, and stores a vector containing all the group structures that point to the
class. If two or more regions of different classes are merged together, their
corresponding groups are added to the group vector of the class. This reduces
the computing time otherwise used in node reassignment. The Figure 3.4
shows the relationship between the class and group structures.

The merging process is performed using the vector of node structures,
generated during the splitting process. This vector is sorted by the size of
the regions, where the first nodes correspond to the biggest homogeneous
regions in the image. This means that all the classes are started using the
biggest region possible, and smaller regions are added later.

The use of intermediate group structures between the node and the class
structure is useful for the implementation only. It considerably reduces the
number of operations that are required to merge multiple classes together.
At the end of this process, the remaining classes are labeled from 1 to L,
consecutively.

Figure 3.4. Graphic representation of the group and class structures. The
arrows depict pointers to structures.
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3.2.5 Small-region elimination

At the end of the split and merge segmentation process, all the pixels in the
image are assigned to a class in the resulting segmentation. However, there
are many classes among them associated only to a small group of pixels.

Normally, it is expected for an image segmentation to have a reduced
number of classes, and those classes are expected to group the important
areas in the image. For this reason, the excess of small classes may suppose
a problem for some applications. It may result convenient to eliminate those
small classes, and later reassign their pixels to bigger classes. The elimination
process is straightforward. All the class structures are inspected and, if the
number of pixels associated to that class is below M pixels, the class is
eliminated along with the structures used by it. All the pixels affected are
declassified.

If the elimination of small classes is used, it results more convenient to
perform the class labeling after this process.

3.2.6 Region growing

The declassified pixels by the small region elimination procedure are reas-
signed to the class that results more convenient by a region growing proce-
dure. Considering that most of the pixels are already classified, the time
required to perform this operation should be short, because the region grow-
ing is applied only to a small number of pixels.

The process starts by introducing all the unclassified pixels into a FIFO
stack. Each element of the stack is tested in order to determine if that partic-
ular pixel may be assigned to a neighboring class. There are two conditions
to meet in order to perform that assignment. Firstly, the pixel should be a
neighbor of a pixel that is already classified. Secondly, the pixels recently
assigned to a class by this process are not considered as classified pixels.

Those pixels that do not meet the assignment conditions are pushed into
another FIFO stack, to start a second cycle. The pixels that were assigned
in the previous step are now considered as classified pixels. This distinction
is made in order to make the regions to grow in layers. The same process is
repeated until no unclassified pixels remain.



Chapter 3. Integral split and merge segmentation 45

To summarize the ISM segmentation algorithm presented in this section,
a series of examples obtained from each step of the methodology are shown
in Figure 3.5. The Figure 3.5a shows the original image. Then, Figure 3.5b
shows the intensity values obtained from the original image, used here as
a descriptor. Figure 3.5c shows the homogeneous regions obtained from the
splitting process. Their boundaries are shown in black. Figure 3.5d shows the
homogeneous regions obtained after the merging process. The boundaries are
also shown in black. Figure 3.5e shows in red the small regions, containing
less than M pixels. Finally, Figure 3.5f shows the resulting segmentation,
obtained after the region growing procedure. This image shows each class
label in a different color.

3.3 Tests and Results

This section presents the results obtained from of a series of tests, divided
in three categories. The first set of tests is made to determine the optimum
segmentation parameters for the proposed algorithm. The second one com-
pares the outcome of the proposed methodology with other state-of-the-art
segmentation algorithms. The third set is made to experimentally ascertain
the execution time of the method.

It is desirable that the proposed methodology reaches similar results than
other state-of-the-art methods. Also, the methodology proposed is expected
to be fast enough to be used in real-time applications (i.e. 15 fps or more).
Our algorithm is compared with the eleven segmentation methods presented
in the survey made by Vantaram and Saber [84]. These algorithms are: the
Edge Detection and Image Segmentation (EDISON) system by Christoudias
et al. [14], the Compression-based Texture Merging (CTM) by Yang et al.
[89], the J-Segmentation (JSEG) algorithm by Deng and Manjunath [21],
the Dynamic Color Gradient Thresholding (DCGT) by Balasubramanian
et al. [6], the Gradient Segmentation (GSEG) algorithm by Garcia Ugar-
riza et al. [79], a multiresolution extension of the GSEG methodology called
MAPGSEG by Vantaram et al. [85], the Level Set-based Segmentation (LSS)
by Sumengen [77], the Gibbs Random Field (GRF) algorithm by Vantaram
and Saber [83], the Graph-based Segmentation (GS) algorithm by Felzen-
szwalb and Huttenlocher [23], the Ultra-metric Contour Map (UCM) seg-
mentation by Arbeláez and Cohen [4], and a Color Texture Segmentation
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Figure 3.5. Segmentation steps: Original image (a), feature description
image (b), image after the splitting process (c), image after the merging
process (d), elimination of small regions (e), and the resulting segmentation
classes obtained after the region growing procedure (f).

(CTS) by Hoang et al. [32]. These segmentation algorithms are evaluated
using the Normalized Probability Rand (NPR) index proposed by Unnikrish-
nan et al. [81]. The NPR index requires reference segmentations to determine
the evaluation measure, and the Berkeley Segmentation Dataset and Bench-
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mark (BSDS) proposed by Martin et al. [59] is used for that purpose. This
is a collection of 300 natural images that includes from 5 to 10 human-made
segmentations for each image.

Our ISM algorithm is also evaluated using the NPR index and the BSDS
images, in order to compare our results with those from the eleven algorithms
of the survey, under equal conditions. Additionally, to ascertain the signif-
icance of the results obtained, a statistical t-test was performed. The test
protocols explaining the different experiments are presented next, along with
the discussion of the obtained results.

3.3.1 Evaluation of results, using the NPR index

The segmentations resulting from the tests performed were evaluated using
the Normalized Probabilistic Rand (NPR) index, a segmentation evaluation
methodology proposed by Unnikrishnan et al. [81]. This methodology com-
pares an image segmentation against a reference segmentation (i.e. the ideal
outcome) and determines their similitude. The NPR index has four desir-
able properties for segmentation evaluation: Firstly, the method is able to
compare segmentations that have a different number of regions. This prop-
erty is important, because the ISM segmentation methodology automatically
determines the number of labels of a segmentation, and may differ from the
references or the results from other algorithms. Secondly, the NPR index
presents no degenerate cases, in which bad segmentations obtain abnormally
good results. Thirdly, the NPR index is able to use multiple segmentation
references to obtain a more objective result, and it is able to accommodate
the refinement of regions found in the references. Finally, the measure ob-
tained from the NPR index allows the comparison between segmentations of
different images, or between segmentations from different algorithms.

In this work, the Matlab toolkit provided by Yang et al. [89] is used to
compute the PR index. The required human-made references are provided
in the BSDS. The NPR index is obtained using Equation 3.17,

NPR =
PR− E[PR]

max[PR]− E[PR]
(3.17)

where max[PR] = 1, and E[PR] = 0.6064, according to Vantaram and Saber
[84], for the set of 300 natural images in the BSDS.
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3.3.2 Statistical tests

For all the tests performed, the segmentation results obtained using the NPR
index were averaged. This result is the mean performance of the ISM algo-
rithm, over the 300 images in the BSDS. This mean result was compared
with the results from the eleven algorithms in the survey of Vantaram and
Saber [84], in order to determine their differences in quality. However, a
simple comparison of the mean performance is not enough to provide a con-
clusion from such comparisons. In cases where the results are too close, the
difference may not be significant. In order to identify such cases, statistical
significance tests need to be performed for all the comparisons made. In this
study, we use a two-sample t-test, where different variances are assumed.
Our null hypothesis is that the mean results of two test sets are the same.
On the other hand, our alternative hypothesis is that the mean results of two
test sets are actually different.

The results obtained are reported in the following sections. Additionally,
different tests were performed to optimize the parameter p required by the
ISM methodology, the parameter M used for small-region elimination, and
the parameter R used in the preprocessing stage to calculate the SD image.

3.3.3 Parameter optimization

This section presents the tests made in order to determine the best segmenta-
tion parameters for the proposed methodology. The parameters to optimize
are three. The first one is the parameter p of the ISM methodology, used to
determine the variance threshold σ2

T of the image. This parameter specifies
the percentile of the image intensities that should be below σ2

T in an adap-
tation of the method proposed by Garcia Ugarriza et al. [79]. The second
parameter is the minimum size M allowed for a class in the resulting segmen-
tation. This parameter is used by the small-region elimination process. All
pixels of classes below the value of M are declassified and reassigned to big-
ger classes. The last parameter R defines the size of the window w = 2R+1.
This window size is required to calculate the SD image of the preprocessing
stage. The SD image is used here as a texture descriptor.
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Gradient histogram threshold

The threshold p used to determine the value of σ2
T , is adapted from the work

of Garcia Ugarriza et al. [79]. They report a value of 0.8 for their adap-
tive gradient thresholds. However, because the adaptation of this method
may lead to differences in the results, we conducted a test to independently
determine the value of p.

For this test, we used the 300 images from the BSDS proposed by Martin
et al. [59], as a training set. All the images in this set were segmented using
different values in 0 ≤ p ≤ 1. The segmentation evaluations, obtained using
the NPR index show that, the best value is p = 0.82. Even though this is
the best average evaluation value, the statistical significance test performed
shows that the differences of the segmentation results are not significant for
values in 0.49 < p < 0.88, meaning that the method is robust for different
values of p. This means that the value of p = 0.82 and the value of 0.8
reported by Garcia Ugarriza et al. [79] for their adaptive gradient thresholds
have no significant differences. From now on, we use the value of p = 0.82
only as a preference.

Size of a small region

We conducted a test to determine the optimal value for the minimum class
size M , used in the small-region elimination step. The 300 testing images
from the BSDS were segmented, this time using different values of M , that
vary from zero to 500 pixels. The results were evaluated using the NPR
index, and the next results were found.

First, we found that the optimal value obtained is M = 400. However,
the statistical significance test performed showed that, there is no significant
difference in 0 ≤ M ≤ 500. Therefore, the elimination of the small classes is
not relevant to ascertain the quality of the image. However, it may be used
for display purposes. We choose the value of M = 400 for the comparison
tests, described in Section 3.3.4.
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Window size to obtain a deviation image

Another test was conducted to determine the optimal size of the inspecting
window, used to obtain the SD image in the preprocessing stage. We used
the 300 images in the BSDS to obtain different segmentation sets for different
values of R. We average the results from the 300 segmentations for a given R
value, and then compare the different average results obtained using different
R values. The values of R vary in the range 0 ≤ R ≤ 20. The result obtained
shows a maximum for R = 8. However, the statistical significance test shows
that the differences are not significant for values in 5 ≤ R ≤ 12. In our
implementation, we also used the integral images in the preprocessing stage,
to calculate the SD image. This has two advantages: firstly, the SD image
is obtained in linear time, and secondly, that time is independent of the size
of the window that is used, i.e. R. Therefore, we can use any value of R
without performance losses. We choose the of R = 8 for the performance
tests, only as a preference.

3.3.4 Segmentation performance

This section presents the results obtained from the proposed ISM methodol-
ogy, using the SD images as input, after the small-region elimination process.
The Figure 3.6 shows a diagram of the segmentation process performed using
the ISM methodology. The results were compared with other state-of-the-art
segmentation methods, and were also evaluated using the NPR index.

Figure 3.6. Diagram of the segmentation process using the ISM method-
ology.
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The evaluation of the segmentations, obtained from the 300 images from
the BSDS using the ISM methodology, obtains an average evaluation µ =
0.390, and a standard deviation σ = 0.636. The parameters used were R = 8
for the SD image in the preprocessing stage, p = 0.82 for the ISM segmenta-
tion, and M = 400 for the small-region elimination step.

The results from our ISM methodology were compared with the eleven
algorithms reported by Vantaram and Saber [84]. Some image examples
obtained from these results are shown in Figure 3.7. The eleven algorithms
used for comparison were applied to the same 300 images from the BSDS than
our ISM methodology, and their segmentation results were also evaluated
using the NPR index. Therefore, the tests were conducted under the same
evaluation conditions.

Figure 3.7. Example results: the input image (a), the SD image (b), the
segmentation of the SD image using ISM (c), and a human-made reference
segmentation (d).

The Table 3.1 shows a comparison of the results obtained by our algorithm
and the eleven algorithms. Each algorithm was applied to the 300 images
from the BSDS. The resulting segmentations were evaluated using the NPR
index. The table shows the mean result for each algorithm (µi), and the
standard deviation of the results (σi). Additionally, the table shows the
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Alg. i µi σi t-test
ISM 0.390 0.636
EDISON 1 0.377 0.383 µ = µ1

CTM 2 0.386 0.368 µ = µ2

JSEG 3 0.440 0.318 µ = µ3

DCGT 4 0.394 0.375 µ = µ4

GSEG 5 0.496 0.306 µ 6= µ5

MAPGSEG 6 0.495 0.312 µ = µ6

LSS 7 0.329 0.344 µ = µ7

GRF 8 0.488 0.309 µ = µ8

GS 9 0.457 0.324 µ = µ9

UCM 10 0.507 0.322 µ 6= µ10

CTS 11 0.214 0.419 µ 6= µ11

Table 3.1. Results from the evaluation of the 300 image segmentations,
using the NPR index. The table shows the algorithm names (Alg.), a nu-
merical label (i), the mean result (µi), the standard deviation of the sample
(σi), and the significance test decision (t-test).

conclusions obtained from the statistical significance t-test. The mean result
of each algorithm used for comparison (µi), was tested against the mean result
from our ISM methodology (µ). The t-test tells if the difference between
mean values is significant or not. The table shows µ = µi when the differences
are not statistically significant, and µ 6= µi otherwise.

The results from the t-test show that, there are no significant differences
between the results obtained from our methodology and the algorithms used
for comparison, with the exception of the GSEG and the UCM algorithms
that obtain better results, and the CTS algorithm that obtains worse results.
Therefore, our ISM methodology using the SD image as a texture descriptor,
obtains results comparable to most of the eleven algorithms tested. However,
the use of a feature descriptor other than the SD image may lead to better
results.

3.3.5 Execution time and algorithmic complexity

An execution time test was performed to determine the complexity of the
ISM methodology, regarding to the number of pixels processed. For the test,
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150 scaled sets of the BSDS were used. The ISM segmentation was applied
to all the 300 images in each scaled set. The segmentation of each scaled set
was repeated 100 times, just to increase the accuracy of the registered time
T . This process was repeated for all the 150 scaled versions. The Figure 3.8
shows as dots the time (ms) obtained experimentally for different number of
pixels (i.e. n inputs), corresponding to different scaled versions of the BSDS.
The average segmentation time for a typical n-pixel image from the database
is obtained by doing T/30000.

The results show a piecewise linear behavior, O(n) in Big-O notation.
The discontinuities between segments are related to the canvas enlargement
step of the ISM methodology. For non-square W × H image sizes, having
min(W,H) < 2ℓ/2, two quads are filled only by empty pixels. The pro-
cessing required for those quads is negligible. However, for images having
min(W,H) ≥ 2ℓ/2, there are no empty quads, and the number of quad di-
visions increases significantly. The time jump occurs for image sizes having
min(W,H) = 2ℓ/2 + 1. Even though these jumps seem to increase the time
consumption, their occurrence decrease in frequency as n increases, because
the occurrence of the jumps is in function of powers of two.

The results of the different experiments shown as dots in Figure 3.8 were
adjusted to lines, using the least squares fitting methodology. The tests
performed on the 300 images from the BSDS for images of 481× 321 pixels
show that, a single image is segmented in an average time of 32.6 ms, using
a microprocessor 4th generation Intel Core i7 at 3.40 GHz. Because of its
piecewise linear time complexity, the ISM methodology may achieve real-time
segmentation, using the adequate hardware.
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Figure 3.8. Time complexity of the ISM methodology.



Chapter 4

Object recognition using
feature histograms

This chapter presents the object recognition system developed for this thesis
work. The object recognition methodology uses histograms that combine
texture and color features, extracted from the images used for both learning
and testing. The Section 4.1 shows an overview of the object recognition
field, and of the proposed methodology. Then, the methodology used for our
object recognition system is described in Section 4.2. The tests performed
using our object recognition methodology are presented in Section 4.3, along
with the results obtained from these tests.

4.1 Introduction

The recognition of objects is a task in which a computer algorithm tries to
identify an object in an image, regardless of its orientation, scale, illumi-
nation, occlusion, and other factors that affect the image. Moreover, the
recognition may include not just a particular object, but a family of objects
that share some characteristics.

The object recognition methods allow a computer program to identify
specific objects of interest in images, and to obtain information about them,
like their location, orientation, distance, among others. However, the object
recognition is still an open research area, and there are several approaches

55
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to the problem, where the results obtained depend on the specific constrains
of a particular application.

In their survey, Roth and Martin [72] classify the object recognition ap-
proaches into two main categories: the generative models and the discrimi-
native models. The generative models try to find a suitable representation
of the original data. These methods try to approximate the original data to
a model, while keeping as much information as possible. A likelihood metric
is calculated for a given a sample, and the sample is then assigned to the
most likely class. Examples of generative models include principal compo-
nent analysis (PCA) [44], independent component analysis (ICA) [42], and
non-negative matrix factorization (NMF) [50], among others. On the other
hand, the discriminative models try to find optimal decision boundaries in the
data for a given label. An unknown sample is classified by directly assigning
a label, based on the estimated decision boundary. Examples of discrimina-
tive models include linear discriminant analysis (LDA) [22], support vector
machines (SVM) [86], and boosting [24], among others.

The generative methods are further divided into three subcategories:
model-based, shape-based, and appearance-based approaches. The model-
based approaches try to approximate the objects as a collection of geomet-
rical primitives, such as spheres, cones, cylinders, boxes, etc. On the other
hand, the shape-based approaches try to represent the object by the shape of
its edges (i.e. their contour). Regarding to the appearance-based approaches,
these methods try to model the object using only its appearance properties,
commonly captured using different views of the object.

Regarding to the features used, these methods can be further subdivided
into local and global approaches. The local approaches calculate many fea-
tures at single points or for small neighborhoods in the image. These fea-
tures by themselves are normally not useful, because they are not invariant
to changes in illumination, noise, scale and orientation. Therefore, addi-
tional processing is often required to obtain features that are invariant to the
aforementioned problems. These processed features are commonly known
as descriptors. In contrast, the global approaches obtain information from
the whole image, using all the pixels to obtain the model. The goal is to
project the original data onto a subspace that optimally represents the data.
This allows the global methods to reconstruct the original data to some ex-
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tent. This property gives the global methods more robustness than the local
methods against partial occlusions of the object of interest.

In this chapter, we present an object recognition methodology belonging
to the category of the generative appearance-based methods, using a global
approach. Our methodology uses texture and color features, and histograms
to model the objects. Example images of different objects are presented
to the system in the learning stage. The system then builds a knowledge
database from those examples, to be used during the evaluation process.
The identification of an object is done by assigning a label to the evaluated
image. This label describes a particular object, associating the image under
evaluation with a previously learned example.

The object recognition is normally performed in two stages: the feature
extraction and the classification [38]. During the learning stage, images of
several views from different objects are presented to the system, along with
a label that identifies each object shown. The system then extracts the
distinctive features from each image, and builds an histogram that describes
the object. The given label is then associated to its corresponding histogram
in order to build the knowledge database, and it is later used by the classifier
to identify unseen views of the trained objects.

The main objective of the system described in this chapter is to distin-
guish a particular object among previously learned objects. In order to test
the system, an image database is needed. This image database should meet
certain requirements. First, the database should be a collection of images of
many different objects. Also, several different views of each object should
be included. Finally, images without background are preferred, because the
system here presented is not able to isolate the background from the object
of interest, at this stage of development.

We have found an image database that meets the aforementioned require-
ments in the Amsterdam Library of Object Images (ALOI) [1]. This library
contains several databases, and one of those databases is a collection of im-
ages of 1000 small objects, from 72 different points of view. The objects in
the images are at the same distance from the camera, and the background
of all the images is black. We use this database to train and test the object
recognition system, using different sets of images for each task.

The system uses four different image features, consisting of a texture
feature, the color hue, the color saturation, and the luminance of the image.
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These features are extracted from color images, previously transformed to
the HSLuv color space. This color space is only a different representation
of the CIELuv, made to express its color channels in terms of the image
properties: hue, saturation and luminance.

The HSLuv (CIELuv) color space is used instead of simple RGB because
it is a perceptual color space, meaning that the color representation emulates
the visual response of the human eye. This has advantages over other rep-
resentations such as the RGB, because color distinctions in the perceptual
color spaces are similar to the way the human eye distinguishes different col-
ors. In this regard, the frontiers between colors found by an algorithm are
closer to those frontiers identified by the human eye. We have found that the
use of perceptual color spaces improves image segmentation [17], and may
also improve the methodology presented here. The use of CIELuv instead of
other color spaces, such as the widely known CIELab color space, is preferred
because CIELuv is faster to calculate, whilst producing similar results than
CIELab in segmentation applications.

In addition to the color features, we also included a simple texture feature:
the standard deviation (SD) image, previously discussed in Chapter 3. This
texture feature registers the intensity variations in the neighborhood of each
pixel of the image, meaning that the noisy or textured regions are grouped
together into regions of homogeneous intensity in the feature image. We
choose this feature because of its simplicity and because it has previously
obtained good results, such as in the work of Lizarraga-Morales et al. [56].

The features that are extracted from the image in the HSLuv color space
are the hue, saturation, luminance, and the SD texture. Each feature is
saved into a single image or feature map. These four feature maps are then
analyzed in order to obtain a compact representation that describes the image
trough histograms. An histogram is calculated for each image feature and
then, a combined histogram is assembled, holding the statistics of each image
feature. The histograms obtained in this way are used both for learning and
testing.

The learning methodology used in this work is as follows. A combined
histogram is calculated for each image in a learning set, and is associated to
its corresponding label. The knowledge database is then built as a collection
of histogram–label entries, containing all the feature histograms obtained
from the learned examples.



Chapter 4. Object recognition using feature histograms 59

The testing procedure consists in extracting the combined histogram from
an image under test. Then, the histogram is compared against all the his-
tograms in the knowledge database. A distance metric is used to compare the
histograms, and the label of the histogram in the knowledge database, that
is more alike to the histogram under test, is assigned to the tested image.

For testing the system, we used the image database from the ALOI, and
divided the images into two sets. The first set is used for training, and the
second set is used for testing. We compare the number of correct classification
outcomes, and the number of wrongly classified images, to obtain a classifi-
cation rate. Our results show a classification rate above 90%, depending on
how many examples are used for training.

4.2 Methodology

In this section, the methodology used for the object recognition system is
presented. An image dataset containing different views of several objects is
used, both for learning and classification. First, each image is transformed
to the CIELuv color space, from which the visual features of the object are
extracted as feature maps. Then, combined feature histograms are obtained
from those feature maps. In the learning stage, the combined histograms
obtained from a training set are saved in a knowledge database, along with
the labels assigned to their corresponding images. For the classification stage,
a combined feature histogram is obtained from an image under test, and is
compared against all the histograms stored in the knowledge database. The
label of the histogram in the knowledge database that is closer to the tested
histogram is then assigned to the image under test. Details of each step of
the object recognition methodology are presented next.

4.2.1 Color features from the HSLuv color space

To obtain the image features, we use a transformation of the CIELuv color
space called HSLuv. The HSLuv color space consists of three channels:
hue, saturation, and luminance. Each channel is obtained from the origi-
nal CIELuv color space, using the Equations 4.7, 4.8, and 4.2, respectively.
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The components u∗ and v∗ of the CIELuv color space are obtained from the
CIEXYZ color space, using the Equations 4.3 to 4.6.

The Equation 4.1 is used to transform the sRGB color representation to
the CIEXYZ color space. We assume that the images used in this work are all
in the sRGB color space, whose components are defined as r∗, g∗, b∗ ∈ [0, 255].
The Equation 4.1 requires normalized components of the sRGB color space,
defined as r, g, b ∈ [0, 1].
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The CIELuv color space is derived from the color components in the
CIEXYZ color space. The CIELuv color space consists of three components:
L∗, u∗, and v∗; where the component L∗ is the luminance, whilst u∗ and
v∗ are chromatic components. The luminance (L∗) is calculated using the
Equation 4.2, and the chromatic components (u∗ and v∗) are calculated using
the Equations 4.3 to 4.6.
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u′ =
4X

X + 15Y + 3Z
(4.3)

v′ =
9Y

X + 15Y + 3Z
(4.4)

u∗ = 13 · L∗ · (u′ − u′
n) (4.5)

v∗ = 13 · L∗ · (v′ − v′n) (4.6)

where Yn is the Y component of the color used as reference white, required to
perform color balance on the image. We do not require this color balance for
our aplication, and for practical purposes we asume Yn = 1, which produces
no color balance.

The HSLuv color representation is then obtained from the components of
the CIELuv color space. The luminance component is the same calculated
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for the CIELuv space (Equation 4.2). The hue component (H∗) is calcu-
lated using the Equation 4.7, and the saturation (S∗) is obtained using the
Equation 4.8.

H∗ = 2 tan−1

√

(u∗)2 + (v∗)2 − u∗

v∗
(4.7)

S∗ =

√

(u∗)2 + (v∗)2

L∗
(4.8)

4.2.2 Normalization of the HSLuv color space

The HSLuv components are defined in different ranges. In order to generate
the required feature maps, a normalization stage is required. The HSLuv
color space is normalized linearly for the components H∗ and L∗, as shown
in the Equations 4.9 and 4.10, respectively. However, the component S∗

required a special normalization criteria.

H = 1
2π
H∗ (4.9)

L = 1
100

L∗ (4.10)

The sRGB colors transformed to HSLuv show, in general, a low saturation
value. The exception are few colors from all the representable sRGB colors.
This shows a non-linear distribution for the saturation component of the
HSLuv color space. Whilst most colors have low saturation values, few colors
exhibit high saturation values.

This distribution of the saturation values is not ideal for the classification
methodology used in this work, because it makes difficult to determine levels
in the saturation component that allow the identification of objects using
this component. The range of values where the distinction of object features
should be performed is very narrow. This should be not a problem if real
numbers of enough resolution were used. However, the methodology uses
integer images as input, where the intensity values are in the range [0, 255].
Therefore, the saturation component (S∗) should be adjusted in order to
make a better use of the intensity values available.
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To do this adjustment, we use a sigmoid function. This function moves
away the low saturation values, and brings near the high saturation values.
This does not make the distribution linear, but makes a better use of the
intensity range available. The Equation 4.11 shows the sigmoid function
used to do this adjustment.

S =
2

1 + exp(−k · S∗)
− 1 (4.11)

where k = m/S∗
max is a constant, being m the slope given to the sigmoid

function, and S∗
max the maximum saturation value for the color space used.

By transforming to HSLuv all the representable sRGB colors, we have
found that the maximum saturation (S∗) value that can be obtained from a
given sRGB color is S∗

max = 4.0462337. The slope m of the sigmoid function
was determined by trying different integer values, and checking the resulting
distribution. The objective here was not to obtain an optimal distribution,
but to separate apart the low saturation levels to aid the histogram repre-
sentation. We have found that using m = 4 obtains a good adjustment.
Therefore, we use k = 0.988774 ≈ 1 in the Equation 4.11 to normalize the
saturation component of the HSLuv color space.

4.2.3 Texture feature from the Luminance (L) channel

The luminance component of the HSLuv color contains only the light inten-
sity information of the image. No chromatic information is contained in this
component. Because of this, the luminance component is used to obtain the
textural feature used by the methodology.

In this work, we use a simple texture descriptor: the standard deviation
(SD) map, or SD image as described in Chapter 3, Section 3.1. We use the
neighborhood R = 8 (a window of 17 × 17 pixels) to obtain the SD image,
as determined in the tests described in Chapter 3.

Along with the HSLuv components H∗, S∗ and L∗; we include an addi-
tional feature T ∗, that is the standard deviation obtained from the luminance
component of the image. The normalized version of T ∗ is calculated using
Equation 4.12,
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T =
T ∗

T ∗
max

, (4.12)

where T ∗
max is the maximum value found for the SD images in the data set.

The normalized versions of each feature (T , H, S, and L) are used to build
the required histograms, and from now on are referred as THSL features.

4.2.4 THSL feature histogram

After obtaining the feature images (Texture, Hue, Saturation, and Lumi-
nance), an histogram is calculated for each feature. In order to obtain better
results, the number of bins for the histograms should be determined exper-
imentally, and may be different for each feature. Finally, the feature his-
tograms are concatenated to build the THSL histogram. In this work, we
chose to concatenate the feature histograms in the order THSL. However,
this arrangement has no impact in the final results. In this work, each THSL
histogram is obtained from a single image, either from the training or from
the testing data set.

4.2.5 Learning methodology: Histogram collection

The learning process is performed by examples. Each example consists of a
single image, and a label that identifies the object in the image. The learning
process is made using as many images as required.

From each image, a THSL histogram is obtained. All the histograms
are saved in a set of labeled histograms, describing the different objects in
the image set. This collection of histograms and labels is our knowledge
database, and is used by the classification step to identify objects.

4.2.6 Histogram Intersection distance

The classification process requires the comparison of a THSL histogram ob-
tained from an image under test, and the multiple THSL histograms stored
in the knowledge database.
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To compare histograms, we tried several distance metrics commonly used
to compare histograms. The tested distances were: Correlation, Chi-Square,
Intersection, and Bhattacharyya distances. In an early design stage we tried
a simple one-to-one histogram comparison using each of these algorithms.
The results obtained were poor for all distances, except for the Intersection
distance.

The intersection distance is defined as follows. Let C be an histogram
containing B bins defined as C = {c1, c2 . . . , cB}, where C(i) = ci. The
intersection distance d between an histogram under test Ct and a reference
histogram Cr, both of size B, is then calculated using the Equation 4.13.

d(Ct, Cr) =
B
∑

i=1

min
(

Ct(i), Cr(i)
)

(4.13)

A more detailed study of this distance shows properties that are useful
for the classification methodology designed for this work. The intersection
distance ignores those bins that are present in the reference, but absent in
the histogram under test. This property of the intersection distance is useful
for the object recognition task described in this work, because a single object
may have different visual properties, depending on the point of view of the
object that is presented to the classifier. If a given feature bin is not present
in the histogram under test, that bin is just ignored by the distance metric.

This distance is the sum of the minimum bins from each histogram. For
the intersection distance, the comparison is better the larger is the distance.
In order to obtain high distance values, the difference between bins from the
histogram under test and from the reference histogram should be small. The
maximum distance value is equal to the sum of the bin values of the reference
histogram.

4.2.7 Histogram classification using the intersection dis-
tance

In order to classify a given histogram, obtained from an image containing
an object to identify, we use the next procedure. The distances between the
histogram obtained from the image under test, and all the histograms in the
learning database are calculated, using the intersection distance. Then, the
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label of the histogram in the knowledge database with the largest distance
to the histogram tested, is assigned to the image under test.

This is a simple classification method that is not very efficient in the use of
memory, and requires the optimization of the number of bins to use for each
feature histogram. However, this classification methodology obtains high
classification rates in our experimental tests. Several tests were performed in
this regard, and are described in the next Section 4.2, along with the results
obtained.

4.3 Tests and Results

In this section, the results obtained from the object recognition system, de-
scribed in Section 4.2, are presented. We also present the tests performed
to determine the optimal number of bins to use for the THSL feature his-
tograms, and the proportion of bins for each THSL feature. For all the tests,
we used the ALOI 1000 image database, described next.

4.3.1 Image Database: ALOI 1000

The objective of the methodology presented in Section 4.2 is to learn the
most important features that describe an object, when different views of the
object are presented to the system. Therefore, an image database providing
different views of several objects was required for testing the method. In this
regard, we used an image database from the Amsterdam Library of Object
Images (ALOI) [26]. The ALOI provides different sets of object images, with
varying illumination direction, different illumination color, different object
viewpoints, and wide-baseline stereo images. Also, the ALOI provides dif-
ferent versions of the aforementioned image sets at different resolutions: full
(768× 576), half (384× 288), and quarter (192× 144). All the objects in the
ALOI images are small objects, and are placed at the same distance from the
camera. Also, the background of the images in the dataset is always black.
At this stage, we need to test our classifier without the adverse effect of an
arbitrary background, and the ALOI database provides images that meet
our requirements. Some examples of the objects found in the ALOI 1000
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Figure 4.1. Examples of the object images found in the ALOI dataset.

database are shown in Figure 4.1. The Figure 4.2 shows examples of the
images taken from a single object, from different points of view.

For this work, we use a data set containing 72 000 images, consisting of 72
different points of view of 1000 different objects (taken in steps of 5◦), with
constant illumination of the scene, and at half resolution (384× 288). From
the 72 000 images in the database, we randomly select images to obtain two
sets, a training set and a testing set. The random selection was performed
without replacement, so that no image is contained in both sets, and no
image is left out. In this regard, different views of the same object are used
to train the classifier. The views not used for training were used to test the
generalization capability of the classifier.

4.3.2 Optimal number of bins for the THSL histogram

During the experimentation with histogram lengths, we have found that the
number of bins used for each feature of the THSL histogram affects the
classification result. In order to determine the optimal number of bins for
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Figure 4.2. Image examples from different points of view of a single object
from the ALOI 1000 database.

each feature histogram, several tests were made. We performed training and
classification of the image database for different histogram configurations.

We tried different histogram sizes, varying from 20 bins to 250 bins, for
each THSL feature. The number of bins were adjusted independently for
each feature, using a hill climbing methodology based on successive approx-
imation. At first, the combinations tried were modified using large steps.
Then, the steps were gradually reduced as the solution improved. At the end
of this optimization process we obtained the following THSL histogram con-
figuration: The best size for the texture histogram is BT = 163 bins, for the
hue histogram is BH = 155 bins, for the saturation histogram BS = 52 bins,
and for the luminance histogram BL = 170 bins. The resulting THSL his-
togram consists of the combination of the four feature histograms, resulting
in an histogram of 540 bins.

The classification results obtained using this histogram configuration are
presented in the next section.
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4.3.3 Classification performance

In order to test the classifier, we randomly divided the image dataset into two
image sets, one used to train the classifier and the other for testing. However,
the optimal number of examples required for training was unknown.

In order to determine an acceptable size for the training set, different
training sets were generated, each one of a different size, varying from 10%
to 90% of the original image set. For each training set, a testing set was
generated, containing the rest of the images of the database not used in the
training set.

The classifier was trained and tested, using a different pair of training and
testing sets each time. The results obtained are shown in Table 4.1, where
the column ‘Pair’ specifies a label for the train–test set pairs used for classi-
fication. The column ‘Training’ shows the percentage of the images from the
full database used to build the training set. The column ‘Testing’ shows the
percentage of images from the full dataset used for testing. Finally, the col-
umn ‘C.Rate’ shows the classification rate achieved using the corresponding
train–test set pair.

Pair Training Testing C.Rate
1 10% 90% 89.58%
2 20% 80% 94.69%
3 30% 70% 96.26%
4 40% 60% 96.96%
5 50% 50% 97.66%
6 60% 40% 97.93%
7 70% 30% 98.24%
8 80% 20% 98.27%
9 90% 10% 98.61%

Table 4.1. Classification rate (%) for different training and testing set sizes,
measured in a percentage of the full image dataset.

The results obtained are also shown in Figure 4.3. The graphic contains a
curve approximated from the data, showing the performance of the classifier
for each training set size, from 10% to 90% of the full image database.

The results show that, a classification ratio of 89.58% was achieved using
only the 10% of the full image database for training. These results are
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Figure 4.3. Curve approximation of the classification performance, in func-
tion of the percentage of images from the full dataset used for training.

improved for larger training sets, reaching a classification rate of 98.61%
for a training set consisting of the 90% of the full image database.

The results obtained show that a good classification performance may be
achieved using a portion of the original database. Even though the classi-
fication performance increases with the number of examples, the graph in
Figure 4.3 shows that this increment is smaller as the number of examples
increase. The shoulder of the graph provides a good balance between the
number of learning examples required and the classification performance,
being that balance point close to the 30% of the images in the database.

It is important to note that the ALOI database contains some irregular-
ities, assumed to be on purpose. For example, there are images of different
objects with the same label. Also, there are different labels assigned to im-
ages of the same object. These special cases in the image database forbid
the classifier to reach the 100% classification rate.



Chapter 5

Concluding remarks

In this chapter, the concluding remarks of the studies presented in this thesis
are given in Section 5.1. Also, the perspectives of future work following the
research lines discussed in this thesis are presented in Section 5.2. As a
personal note, I include some thoughts about the work developed during the
doctorate in Section 5.3. Finally, references to the published work derived
from this study are given in Section 5.4.

5.1 Conclusions

Conclusions: Real-time template matching

In this study, the maximum cardinality similarity metric (MCSM) is pre-
sented as a replacement of the partial Hausdorff distance (PHD) for real-time
image processing applications. The conducted tests show that the proposed
MCSM methodology shares the same robustness against occlusion, partial
edges, and localization errors than the PHD. Nonetheless, for noisy edge im-
ages, the MCSM and the PHD methodologies show differences: whilst the
PHD is insensitive to few missing edge pixels, the MCSM accurately detects
the proportion of missing edge pixels. This property may be advantageous
for some applications where edge completeness is required to be determined.
Applied to template matching, both the MCSM and the PHD methodologies
show similar results at finding the target shape in natural images, indicating
that the MCSM may be used for edge image registration. Finally, the com-
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puting time test shows that the MCSM is much faster to compute than the
PHD for a large set of points, a property that enables the MCSM methodol-
ogy to be used in real-time image processing applications.

Conclusions: Integral split and merge segmentation

In this study, we propose the Integral Split and Merge (ISM) segmentation
methodology, a split-and-merge segmentation algorithm that uses integral
images to achieve real-time segmentation, through the fast computation of
statistics. Additionally, the ISM methodology performs connected compo-
nent analysis. Therefore, regions showing equal features are labeled as dif-
ferent regions if they are not spatially connected. Also, the method is able to
follow the gradients present in some image areas, and group those areas into
a single region. Lastly, the ISM methodology automatically determines the
number of regions in each image segmentation. The comparison of results
between our ISM methodology and other state-of-the-art algorithms, show
that our ISM methodology obtains results as good as most of the methods
evaluated. Even though the results from the GSEG and the UCM algorithms
obtained a better performance, the outcomes from the ISM method using a
simple SD image as a texture descriptor, are comparable to those of the rest
of the algorithms. However, this quality is achieved by the ISM method us-
ing a single texture feature, whilst the other methods use a combination of
both color and texture features. Additionally, better results may be achieved
using different feature descriptors, or by the combination of two or more de-
scriptors. Regarding to the execution time, the execution tests show that the
ISM methodology is executed with a piecewise linear algorithmic complexity.
To our knowledge, none of the comparison algorithms achieves this execution
time. Our methodology is able to obtain image segmentations in a rate about
32 fps, for images of 481×321 pixels, that depending on the application may
be considered real-time. The results show that the ISM methodology may be
a good alternative for applications that need a fast segmentation using few
image features, whilst still achieving an acceptable segmentation quality.

Conclusions: Object recognition using feature histograms

In this study, we presented an object recognition system that is able to learn
from examples given to the system in real time. The method uses an ap-



Chapter 5. Concluding remarks 72

proach based on feature histograms. The feature histograms are obtained
from four different perceptual features extracted from images, that combine
texture and color features. Regarding to the classification stage of the sys-
tem, a knowledge database is built, containing the histograms extracted from
each learned image, and a label that describes the object in the image. The
classification is then performed by comparing a new histogram, extracted
from the image under test, using the intersection histogram distance metric.
We tested this system on an image database from the Amsterdam Library
of Object Images, a collection of objects captured from different points of
view. The results obtained from a series of tests show a classification success
rate of 98.61%, using a set containing the 90% of the images in the dataset
for training. However, we found that a set with only the 30% of the im-
ages provides a good trade-off between learned examples and performance,
obtaining a classification success rate of 96.26%. Even though the results
are close to the 100% classification rate, some issues remain. The system
still needs to be made robust against different image conditions, e.g. isolate
the object from the background, insensitivity to different illumination con-
ditions, identification of objects regardless of their scale. Moreover, a test
against state-of-the-art object recognition systems is still pending. However,
the system described in this study fulfills the original purposes of this work.

5.2 Future perspectives

The study presented in this thesis document opens several lines of research
that may be explored in the near future. Each methodology discussed in this
thesis may be improved and used in different applications. In this section,
we present some of the ideas that we have for future research.

Some improvements may be still made on the MCSM methodology, by
improve object detection by adding invariance to scale and rotation. Also,
one of the strong points of the MCSM methodology is the ability to handle
edges with missing pixels, and still obtain a metric that correctly reflects the
degree of similitude between a template and the edge image being tested. We
may exploit this property to reduce the data that is processed, improving the
speed by using only a small fraction of the edge points in the comparison.

Regarding to the ISM segmentation methodology, a combined texture–
color segmentation test is pending. In this work, we presented the ISM



Chapter 5. Concluding remarks 73

segmentation using a single texture descriptor: the SD image. We compared
our results against state-of-the-art methodologies using both color and tex-
ture features. This test will tell if the ISM methodology can benefit from
combining texture and color features, such is the case of the segmentation
methods used for comparison in this work.

With respect to the object recognition system, there is still some work
to be done before this study can be published. There is still room for speed
improvements. It would be better if the method is refined in order to im-
prove the description of the objects. Also, the classifier may be optimized
using some heuristic search. These improvements may save memory and im-
prove the execution time. Additionally, the method requires some robustness
against scale and illumination changes. The results obtained should be then
compared against other object recognition methodologies.

The following step would be to identify the trained objects in complex
environments. This task is more complex and computationally expensive,
and will require the aforementioned improvements to the method.

5.3 Final thoughts

In this section, I would like to include some final thoughts about the knowl-
edge and experience acquired during the development of this doctoral work.
The study presented in the previous chapters of this thesis is the result of this
knowledge and experience, that I consider an essential part of my training.

Regarding to the problem at hand, the recognition of objects in images, I
understand this as a problem that requires to find a description of an object,
given one or more image examples of that object. This description is in
essence a data construction, containing the essential information required
to distinguish the object of interest from everything else. The problem lies
in how to model this object description, and how to extract the essential
information from the image examples provided. There are many ways to
approach this problem. In this work, we present a method that performs
extraction of information and description building of the objects presented
in images. The solution is simple, but obtains good results for the cases of
study.
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Another important aspect of the thesis work regards to the execution
of the system, that should be performed in real time. In order to achieve
this, the implemented software requires to be optimized for speed. In my
experience, this optimization implies two important aspects: the use of opti-
mal algorithms, and the use of efficient techniques to write the source code.
These two aspects are combined to reduce the number of CPU instructions
required to obtain the desired results.

Good programming practices recommend to keep a source code that is
clear and easy to read. Also, it is recommended to use only enough memory
to run the algorithm at hand. However, in order to gain execution speed,
sometimes it is required to use algorithms that are more complex, reducing
the clarity of the code. Moreover, for some cases higher execution speeds
can be reached by using more memory, basically used to hold pre-calculated
data. Because the speed is critical for a real time system, sometimes we
had to break those rules by sacrificing clarity and memory, in order to gain
speed for the system. Fortunately, the memory is not a big concern for the
computing equipment currently available.

Finally, there is a key aspect of the research work that I would like to
mention: publication. Publication is essential for the scientific labor, because
the results obtained from the research work are only useful if known by other
researchers, that may benefit from them. However, this is a challenging en-
deavor that requires the development of writing skills and thorough attention
to details. I have found that constant practice and care are necessary in or-
der to obtain a manuscript that meets the criteria for publication. I believe
that the experience gained in this regard is one of the most important and
valuable skills developed during the doctorate.

5.4 Scientific results

As a final note, we would like to mention that the development of this thesis
study produced three publications in scientific journals with JCR impact
factor. The references to these works are presented next.

• F.E. Correa-Tome and R.E. Sanchez-Yanez, Integral split-and-merge
methodology for real-time image segmentation, Journal of Electronic
Imaging, vol. 24, no. 1, p. 013007, 2015, DOI: 10.1117/1.JEI.24.1.013007.
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• R.A. Lizarraga-Morales and R.E. Sanchez-Yanez and V. Ayala-Ramirez
and F.E. Correa-Tome, Integration of color and texture cues in a rough
set-based segmentation method, Journal of Electronic Imaging, vol. 23,
no. 2, p. 023003, 2014, DOI: 10.1117/1.JEI.23.2.023003.

• F.E. Correa-Tome and R.E. Sanchez-Yanez, Fast similarity metric for
real-time template-matching applications, Journal of Real Time Image
Processing, pp. 1–9, 2013, DOI: 10.1007/s11554-013-0363-0.
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