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Abstract

Brain tumor is one of the main cause of death in the world. Its possible treatment con-
sists in a surgery performed by neurosurgeons who open the skull (called craniotomy)
for removing abnormal cells. After tumor resection, patients benefit of improved sur-
vival and life quality. Multimodal images, preoperative Magnetic Resonance Imag-
ing (MRI) and intraoperative Ultrasound (iUS) data, are in general used to support
this complex surgical operation. Preoperative images allow the tumor diagnosis and
the surgery planning. Intraoperative data provide an update in the visualization of
the brain during the operation and enable the control of resection. Indeed, geometri-
cal parameters like tumor volume, position and distance to risk structures are needed
for the success of the surgery. Thus, the detection and extraction of tumorous tissues
are important. In this work, the brain tumor segmentation in multimodal images is
addressed. Tumorous tissue extraction consists in three main stages. First, alterna-
tive methods for brain tumor segmentation in MRI are proposed. Second, the tumor
delineation in iUS using a patient specifc MR tumor model is suggested. Third, an
approach based on the fusion of intraoperative B-mode and contrast-Enhanced Ultra-
sound (CEUS) data is suggested for detection of tumor residuals in iUS.
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Chapter 1

General introduction

This first chapter presents the basic concepts related to the brain tumor resection, and
used in imaging assisted diagnosis and surgery. These concepts include some medical
definitions and an overview of the brain tumor surgery context. Indeed, the problem-
atic of brain tumor tissue segmentation in medical applications is described. Then,
the goal of this study with its applications in clinical setting is clearly presented. The
originality of methodologies used for segmenting brain tumor in magnetic resonance
imaging and ultrasound data is highlighted. The similarity measures employed for
supporting the claims of this work, the quantitative evaluation and the materials in-
volved are described. Finally, the structure of the manuscript is presented.

1.1 Brain tumor surgery context

1.1.1 Definitions

• Tumor: a mass of tissue that grows out of control of the normal forces that regu-
lates growth [2]. Tumors can be benign or malignant (cancerous).

• Metastasis: according to the Nactional Cancer Institut (NCI) dictionary, in metas-
tasis, cancer cells break away from the original (primary) tumor, travel through
the blood or lymph system, and form a new tumor in other organs or tissues of
the body. The new, metastatic tumor is the same type of cancer as the primary
tumor.

• Glioblastoma: also known as glioblastoma multiforme (GBM), is the most com-
mon and most aggressive primary brain tumor [3]. And, according to the NCI,
the GBM is a fast-growing type of central nervous system tumor that forms from
glial (supportive) tissue of the brain and spinal cord and has cells that look very
different from normal cells.

1.1.2 Background

Patients with brain tumors benefit of improved survival after surgical resection of the
tumor. This complex operation is in general supported by multimodal images includ-
ing preoperative (MRI) and intraoperative (iUS) data in order to reach optimal results.
An adequate medical decision for the treatment planning depends on the diagnosis
performed before the surgery and based on MRI data. Intraoperative ultrasound im-
ages provide an update representation of the current state of the tumor during the
surgery.

1
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1.2 Problems and research topic

1.2.1 Preoperative MR data

Geometrical parameters like tumor volume, position and distance to risk structures
are needed to plan the operation. These parameters are qualitatively assessed in the
preoperative MR data in clinical routine. Specially, the tumor volume is employed to
analyze quantitatively the tumor and to study its growth over a period of time. It is
extracted by segmentation approaches. Hence, the accuracy of this task is required in
clinical setting in order to have reliable results that will lead to an adequate medical
decision or treatment. Although the manual tracing of human organs or tissues by
experts has been accepted as ground truth in medicine, the increasing of the patient
datasets turns this practice in a less recommendable routine [4]. Faced with a big MR
images database, the manual tumor delineations performed by neurosurgeons or ra-
diologists suffer of the subjectivity of visual perception, errors caused by the tiredness
and it is a time-consuming task. Due to this, the automatic segmentation methods
are needed and they are selected according their capabilities to achieve results more
similar to those obtained by experts.

1.2.2 Intraoperative US data

Medical image processing on US images is in general a difficult task and still under
improvement because of the low signal noise ratio. Thus, the identification of tumor
boundary and detection of tumor residuals are complex in the intraoperative ultra-
sound data. In the context of brain tumor surgery, residual tumors are still a problem
for neurosurgeons. Due to the invasiveness of the treatment and the fact that tumor
remnant cells are potential sources of new tumor growth; the removal of the maximum
quantity of these abnormal cells is important to save lives. Therefore, after initial resec-
tion, the tissue analysis is fundamental for supporting the physician decision about the
presence or absence of residual tumor cells. Furthermore, at this stage, the big prob-
lem for physician is the differentiation of residual tumors from other hyperechogenic
structures, such as blood vessels.

1.3 Aims and motivations

The goal of this work can be split in three major steps. the development and opti-
mization of segmentation methods to automatically extract brain tumor tissue in the
preoperative MR data. Second, the implementation of an intraoperative technique us-
ing a specific patient MRI model-based for US brain tumor segmentation. Third, the
study and implementation of a tissue classification method for the detection of tumor
remnants so as to optimize the brain tumor resection.

1.4 Originality and methodology

The originality of this work consists in providing alternative methods for brain tumor
tissue segmentation in MR data. Moreover, in iUS, there is no work on the automatic
identification of brain tumor boundary and tumor residuals in the literature. In the
context of brain tumor surgery, the proposed methodology for brain tumor tissue seg-
mentation in multimodal images can be grouped and described by the following three
key points.

2
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1.4.1 MRI brain tumor segmentation

Alternative approaches for MR brain tumor segmentation using active contour models
(ACM) based on region and edge information were proposed. First, a Localized Active
Contour Model (region-based technique) integrating an additional step of background
intensity compensation was presented [1]. This localized active contour model was au-
tomatically initialized via the hierarchical centroid shape descriptor that we employed
for tumor localization in [5]. Finally, in the edge-based technique, a snake energy-
minimization type approach based on a nature-inspired optimization (cuckoo search
strategy) method was introduced [6].

1.4.2 US brain tumor segmentation

Specific patient model from MRI will was used for brain tumor segmentation in in-
traoperative ultrasound images. The tumor model is obtained from preoperative MRI
by using a semi-automatic technique. Indeed, the method consisted of registering the
model with the 3D-iUS data due to the brain tissue deformation. The transformation
in the registration stage will be based on image gradients.

1.4.3 Identification of residual brain tumors

The development of a medical image-processing tool to support surgeons with the
identification of residual brain tumor based on both 3D iB-mode and 3D-iCEUS
(Contrast-Enhanced Ultrasound) imaging was addressed. This approach consisted in
extracting relevant information from both iB-mode and CEUS modalities using auto-
matic segmentation techniques. And, the extracted structures were fused according to
proposed rules to keep only the residuals of tumor.

1.5 Materials and metrics

Two databases were considered in this work. First, an image database of patients with
different kind of tumors collected at the Department of Neurosurgery at the University
Hospital of Leipzig, Germany in the context of a previous research project funded by
the German Research Society (Deutsche Forschungsgemeinschaft) and accepted by the
ethics commission of the University of Leipzig was available. Tumor operations were
guided by using a neuronavigation system (SonoNavigator, Localite, Sankt Augustin,
Germany) including an AplioXG ultrasound device (Toshiba Medical Systems Europe,
Zoetermeer, Netherland) with 2D ultrasound transducers that were tracked using an
optical tracking system. Then, 3D ultrasound volumes were reconstructed from the 2D
slices by the neuronavigation system. These volumes, the 3D iB-mode and 3D iCEUS
data, were acquired before and at the end of brain tumor operations. In the original
2D ultrasound images, the pixel size is 0.422 mm× 0.422 mm and the voxel size of the
reconstructed 3D volumes is 1×1×1 mm3.

Second, the database known as MICCAI 2012 Challenge on Multimodal Brain
Tumor Segmentation Benchmark organized by B. Menze, A. Jakab, S. Bauer, M.
Reyes, M. Prastawa, and K. Van Leemput (http://www.imm.dtu.dk/projects/
BRATS2012, [7]) was used in this work. This challenge contains real data, simulated
data and their gold standards (ground truths). It includes several MR image modal-
ities such as T1, T2, T1C and FLAIR. The parameters T1 and T2 are relaxation times
that enable to discriminate some body tissues and highlight a specific target. The T1C
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(T1 contrast-enhanced MRI) and T2 modalities enhances the visualization of the tumor
while the edema is better visualized in the T2 and FLAIR (Fluid-Attenuated Inversion-
Recovery) modalities. Several works use two or three of these MRI data. In [8] the au-
thors showed that T1C, T2 and FLAIR are the useful modalities for tumor and edema
segmentation.

The quantitative evaluation was performed by using metrics such as: Jaccard in-
dex (J), Dice index (D), Hausdorff distance (dH ), sensitivity (Sen), specificity (Spe),
accuracy (Acc), area under the ROC curve (AUC) [9], error rate (Err) or percentage of
wrong classifications [10] and overlap (Overlap).

The perfect segmentation is obtained when the measures J , D, Sen, Spe ∈ [0, 1]
are equal to 1 and dH achieves the 0 value. Moreover, a sensitivity value of 1 means
that all pixels belonging to the tumor region in the ground truth are correctly detected
in the test image. Likewise, a specificity value of 1 indicates that none pixel of the
healthy tissue according to the ground truth is misclassified as tumorous tissue in the
test image. The metrics used are defined as follows:

J =
|A ∩B|
|A ∪B| , (1.1)

D =
2|A ∩B|
|A|+ |B| , (1.2)

Overlap =
|A ∩B|

min(|A|, |B|) , (1.3)

dH = max

{

max
a∈A

min
b∈B

‖a− b‖, max
b∈B

min
a∈A

‖b− a‖
}

, (1.4)

where A is the handwork segmentation result (ground truth or gold standard) and B
the automatic obtained contour.

Sen =
TP

TP + FN
(1.5)

Spe =
TN

TN + FP
(1.6)

Acc =
TP + TN

TP + TN + FP + FN
(1.7)

AUC =
1

2
(

TN

TN + FP
+

TP

TP + FN
) (1.8)

Err =
FP + FN

TP + TN + FP + FN
(1.9)

where TP , TN ,FP and FN are:
True Positive (pixels correctly classified as tumorous tissue), True Negative (pixels cor-
rectly classified as healthy tissue), False Positive (normal tissue misclassified as tumor
region) and False Negative (undetected tumorous tissue), respectively.
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1.6 Outline

This thesis is structured in order to allow the understanding of the problems to be
addressed, the goals and the motivation of the work, and the proposed methods as
expected solution. The results are provided for supporting the claims of the study.
This manuscript is organized as follows:

Chapter 1: General introduction
This chapter provides the basic concepts used in the context of brain tumor surgery.
In addition, the problems addressed this study, related works to the segmentation of
brain tumor in MRI and US images, the goals of the work and the methodology used
to achieve the results are presented. The database and metrics used for supporting
our claims are described, and follows the structure of the thesis.

Chapter 2: Brain tumor segmentation in preoperative MR data
Brain tumor segmentation by using alternative approaches based on active contour
models is presented. First, a Localized Active Contour Model with background
intensity compensation applied to MR brain tumor segmentation is proposed. The
automatic initialization of ACM via the hierarchical centroid shape descriptor is
described. Finally, the active contours driven by Cuckoo Search Strategy for brain
tumor images segmentation were introduced.

Chapter 3: Brain tumor segmentation in intraoperative US data
A summary of the brain tumor surgery process is presented in this chapter as well
as the functioning of the neuronavigation system. As image-guided surgery has
become a standard in medicine, the image registration methods are also described in
this chapter to understand how the points on a patient are aligned with those on the
preoperative image (MRI).

Chapter 4: Automatic identification of residual brain tumors
In this chapter, an image processing approach is presented for identifying residual
brain tumors. The method is based on the fusion of intraoperative 3D B-mode and
Contrast-Enhanced Ultrasound Data.

Chapter 5: General conclusions and future perspectives
Finally, this chapter gives the conclusions of the study and the possible future works.
Furthermore, it lists also the fruits of this work in term of published papers in confer-
ence and journals.
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Chapter 2

Brain tumor segmentation in
preoperative MR data

2.1 Introduction

This chapter presents proposed segmentation methods and their application on pre-
operative MR images. These methods are mainly active contour models grouped in
two categories, region-based active contour models (RBACM) and edge-based active
contour models (EBACM). In the case of RBACM, a Localized Active Contour Model
(LACM) integrating an additional step of background intensity compensation is in-
troduced. This technique allows to address the problem of high mean intensity dis-
tance between the foreground and background that leads to an incorrect delineation
of the target. Images with large black background region, as common in MRI data,
are sensitives to this problem. Thus, the aim is to minimize the attraction effect of the
active contour model to the undesired borderlines defined by these two mentioned
image regions. In addition, the Hierarchical Centroid Shape Descriptor (HCSD) was
used for detecting the region of interest i.e. abnormal tissue so as to automatically
initialize the active contour. With respect to the edge-based technique, a snake energy-
minimization type approach based on a nature-inspired optimization (cuckoo search
strategy) method is introduced. This strategy assists the converging of control points
towards the global minimum of the energy function, unlike the traditional ACM ver-
sion which is often trapped in a local minimum.

2.2 Related works

In recent years, many segmentation approaches have been proposed with the goal to
develop human-free intervention methods and to improve the result quality achieved
by these segmentation techniques. In the case of a brain tumor, the Magnetic Res-
onance Imaging is used as a standard modality for tissue analysis because it offers
the advantage of being a noninvasive technique [11]. They are mainly categorized in
five groups: Threshold-based, Edge-based, Region-based, learning-based and energy-
based segmentation techniques [12]. One of the powerful image segmentation meth-
ods, from the second and fifth groups, the Active Contour Model (ACM) in a paramet-
rical formulation was introduced by Michael Kass et al.[13]. Its energy has to become
minimal so as to ensure that the active contour is located on the object boundaries. The
energy minimization is achieved by the iterative gradient descent method to solve the
Euler equation. Then, a famous global region-based ACM was proposed by Chan and
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Vese [14]. It uses image content to find the optimum of an energy function that guides
the contour evolution in the separation of regions having different statistical informa-
tion. Instead of using global image information, Lankton et al. [15] suggested to refor-
mulate the Chan-Vese model and the Yezzi model [16] in localized methods. Likewise,
Li et al. [17, 18] introduced a Local Binary Fitting (LBF) model that use a kernel func-
tion for embedding local intensity image information. Unlike this previous localized
scheme based on mean intensity, Wang et al. [19] modeled the local neighborhood by
a Gaussian distribution and their model is called Local Gaussian Distribution Fitting
(LGDF). It enables the regions separation based on the mean intensity and variance of
the local region.

The segmentation via active contours is an immense area where many efforts have
been performed and applied on medical images. In [20], an edge-based active contour
model with flexible initialization is presented and it showed its ability of handling im-
ages with weak and broken edges. The edge and region-based models have each of
them some advantages and drawbacks. For this reason, some models have combined
region and edge information for obtaining an improved model [21, 22]. More recently,
a two-stage image segmentation method was introduced [23]. This technique asso-
ciates the advantage of the local and global region fitting energies by performing the
segmentation using successively the global and local approaches. Additionally, Zhang
and Xie [24] proposed a deformable model based on a gradient convolution field and
its divergence (external force) that attracts the contour to the boundary. The global
minima is achieved by using convex relaxation in the energy functional minimization
problem. This method was tested on a set of 2D and 3D data and, it demonstrated
that it can achieve better results on images with intensity inhomogeneity, noise, weak
edge, complex geometry and even in the case of arbitrary initializations. Also, a Self-
Organizing Active Contour based on region information and region-based ACM based
on local and global intensity statistic were presented and tested on medical images in
[12] and [25], respectively. In order to reach the global minimization, Wu et al [26]
used the Gabor and GLCM (gray level co-occurrence matrix) features for avoiding lo-
cal minima in the contour evolution toward the target object boundary. Above all,
other energies based local image information were employed in models such as: local
image fitting [27] and local likelihood image fitting [28]. Where, the first method takes
into account only the local means intensity, while the second considers both the local
intensity and variance in order to separate distinct regions.

2.3 Contributions

2.3.1 Region-base ACM

In this part of the study, three main contributions have been proposed. First, an al-
ternative scheme for brain tumor detection based on HCSD is introduced. Second, a
reformulation of the Localized Mean Separation (LMS) energy of Lankton is proposed
in order to improve the accuracy and to reduce the computation time in handling im-
ages specially with large black background. The proposed method is called LACM-BIC
i.e, Localized Active Contour Model with Background Intensity Compensation. Third,
these previous approaches are then integrated in a two stage framework for automatic
brain tumor segmentation in MR data. These stages are: (1) use the Hierarchical Cen-
troid Shape Descriptor in order to localize the region of interest (ROI) containing the
abnormal target tissue. The tumor is enclosed in a bounding box which allows to
reduce the operational image area to focus the algorithm on the target tissue to be
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segmented. (2) Apply the active contour technique initialized by the ROI coordinates
determined in the first stage for delineating tumorous area. The ACM is initialized
by a circle whose its center and radius are the centroid and the sides average of the
ROI bounding box, respectively. Compared to the selected state of the art ([18], [19],
[15]), the LACM-BIC showed the capability of reaching highest accuracy in a lowest
computation time for the brain tumor segmentation.

2.3.2 Edge-based ACM

Regarding the edge-based technique, a snake driven by Cuckoo Search strategy for
brain tumor MR images segmentation is proposed. This method deals with the ACM
evolution as a functional optimization problem, whose energy contour minimization
is solved by using the Multi-population Cuckoo Search Strategy (MCSS). The aim is
to find accurately the targeted object edges through a two non-sequential stages algo-
rithm. In the first stage local search spaces (or windows) are set for each control point
from the current contour (or initial contour, as the case may be). The second phase
consists of placing randomly such control points inside each search window, in order
to obtain new ones by the aid of the CS strategy. Moreover, two different search win-
dow geometries were considered: Rectangular Shaped Search Windows (RSSW) and
Pizza-slice Shaped Search Windows (PSSW).

2.4 Foundations

The Hierarchical Centroid Shape Descriptor and the relevant Active Contour Models
are described in this section.

2.4.1 Hierarchical Centroid Shape Descriptor

The HCSD is a shape descriptor for binary images based on centroid coordinates ex-
tracted from a binary image. It is extracted recursively by decomposing the image in
sub-images [29, 30]. This descriptor uses spatial pixels distribution of a binary image as
features and it is based on its decomposition by using the k dimensional tree (kd-tree)
algorithm. The centroid coordinates of sub-regions are extracted for each decompo-
sition level. They contain neighborhood information useful for describing an object
shape. Furthermore, the descriptor length is 2 × (2d − 2) where d is the depth of the
features extraction process. Fig. 2.1 illustrates how an image decomposition in 4 levels
(from 0 to 3) is performed through the kd-tree algorithm. Let I the M×N binary image
with foreground If and background Ib, the HCSD is built as follows

1. Read the binary image I and compute its transposed IT ,

2. Calculate for each of them the centroids C(xc, yc) at the root level by using the
Eq (2.1).

xc =
m10

m00
, yc =

m01

m00
(2.1)

where m10, m01 and m00 are the first order moment along the x-axis, the first
order moment along the y-axis and the area of If , respectively. The raw moments
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mpq of a digital image with pixel intensities I(i, j) are calculated by

mpq =
M
∑

i=0

N
∑

j=0

ipjqI(i, j) (2.2)

3. Divide recursively the image in two sub-images based on the centroids by using
the lines x = xc or y = yc until the desired depth of decomposition is reached. At
each consecutive level, the axis of coordinates captured is alternated.

4. Normalize the obtained vector in the range of [-0.5,0.5] where the point 0 corre-
sponds to the centroid of the root level. The negative values are features of the
left image part while the positives describe the right side relative to the root level
(Fig. (2.1)).

5. Concatenate the features extracted from images I and IT .

Figure 2.1: Illustration of the binary image decomposition via the kd-tree structure: from the root level
(level 0) to the level 3.

The vector obtained through the kd-tree decomposition for the previous process is
described as

v = (x00, y
1
0, y

1
1, x

2
0, x

2
1, x

2
2, x

2
3, y

3
0, y

3
1, . . . y

3
7) (2.3)

where x00 represents the root level coordinate, ynm the mth y coordinate at level n
and xnm the mth x coordinate at level n.

At the root level, a centroid C(x00, y
0
0) is computed from the entire binary image,

but only its xc coordinate is captured (xc = x00) and the image is divided in 2 parts by
the line x = x00. Then, at the level 1 two centroids are calculated from each divided
parts and their yc coordinates are captured (yc1 = y10 and yc2 = y11). This process is
performed recursively until to reach the desired depth of decomposition.

2.4.2 Active contour model: Snake

The basic idea of Active Contour Model is the dynamic motion of a parametric curve
under the action of certain control forces present in the image spatial domain, [13].
These forces are summarised in two types: internal and external forces. The inter-
nal force is responsible of the contour (or snake) smoothness, and the external one of
pushing the snake towards the object boundary. According to the above mentioned,
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the ACM curve is described by P(s, t) = (x(s, t), y(s, t))T , where s ∈ [0, 1] and t is the
discrete time between two consecutive steps. The cost function is the snake total en-
ergy, and its minimum is found when the snake evolves close to the desired contour, it
is given by next equation

Esnake =

∫ 1

0
(Eint(P(s, t)) + Eext(P(s, t)))ds, (2.4)

since Eint and Eext are respectively the internal and external energy terms. They are
described as follows,

Eint(P(s, t)) =
1

2

[

α(s, t)

∥

∥

∥

∥

∂P(s, t)

∂s

∥

∥

∥

∥

2

+ β(s, t)

∥

∥

∥

∥

∂2P(s, t)

∂s2

∥

∥

∥

∥

2
]

, (2.5)

Eext(P(s, t)) =γlineEline(s, t) + γedgeEedge(s, t) + γtermEterm(s, t),

=γlineC(s, t)− γedge|∇G ∗ I(P(s, t))|2 + γterm
CyyC

2
x − 2CxyCxCy + CxxC

2
y

(C2
x + C2

y )
3/2

∣

∣

∣

∣

∣

(s,t)

,

(2.6)

where the curve tension is controlled by the elasticity component α, the bending by
the rigidity component β and, the external energy by the components γline, γedge and
γterm. The external energy term is composed by line (Eline), edge (Eedge) and termina-
tion (Eterm) energy functions, determined using C(s, t) = G∗I(P(s, t)) and its first and
second order partial derivatives (i.e., Cx, Cy, Cxx, Cxy and Cyy), where G is the Gaus-
sian function and I is the image. The traditional solution of this problem consists on
the numerical computing of the Euler equation in (2.7), until the equality is satisfied,

∇Eext − α(s, t)
∂2P(s, t)

∂s2
+ β(s, t)

∂4P(s, t)

∂s4
= 0 (2.7)

This condition corresponds to the minimum energy solution related with the energy
stability state. In other words, the external energy component becomes equal to the
internal one or vice versa.

2.4.3 Chan-Vese model

Chan and Vese (C-V) proposed an active contour model based on region statistical
information [14] integrating the simplified Mumford-Shah model [31]. Their energy
functional takes into account global statistics and it is written in the level set formula-
tion as:

EC−V (c1, c2, φ) = λ1

∫

Cin

|I(x)− c1|2Hǫ(φ)dx (2.8)

+λ2

∫

Cout

|I(x)− c2|2(1−Hǫ(φ))dx

+ν

∫

|∇H(φ)|dx

where c1 and c2 are two constants related to the average intensity inside (Cin) and

10



CHAPTER 2. BRAIN TUMOR SEGMENTATION IN PREOPERATIVE MR DATA

outside (Cout) of the contour C, respectively. As well, λ1, λ2 and ν are nonnegative
parameters. The level set function φ [32] and the Heaviside function H(.) [14] are
described as follows:

φ(x) =











> 0 if x is inside C

= 0 if x ∈ C

< 0 if x is outside C

H(z) =

{

1 if z ≥ 0

0 if z < 0

The derivative of the Heaviside function, called Dirac delta function δ(z), is defined by
the equation:

δ(z) =
d

dz
H(z) (2.9)

With ǫ a positive constant, the implementation of H and δ functions are approximated
by

Hǫ =
1

2

[

1 +
2

π
arctan

(x

ǫ

)

]

, δǫ =
1

π

ǫ

ǫ2 + x2
(2.10)

2.4.4 Mean Separation Energy method

A global image segmentation approach via Coupled Curve Evolution Equations was
introduced by Yezzi et al. [16]. Based on the mean intensity for separating regions, it
is also called mean separation energy (MS) [15]. This model allows extracting a target
object from its surrounding regions based on the maximal mean intensity separation.
Yezzi et al. defined their MS energy as

E = −1

2
‖u− v‖2 + α

∫

C
ds (2.11)

where α ≥ 0 and s is the arc length parameter of the curve C. Variables u and v
denote the average values of statistics data inside and outside C, respectively.

The gradient flow is computed by the following equation

dC

dt
= (u− v)

(

I − u

Au
+

I − v

Av

)−→
N − αk

−→
N (2.12)

where
−→
N (

−→
N = ∇Au), k and I represent the outward unit normal, the signed cur-

vature of C and the image vector, respectively. Au represents the interior area of the
contour C and Av denotes its exterior area. The average values of statistics data u and
v are given by

u =

∫

Ωy
Hφ(y) · I(y)dy
∫

Ωy
Hφ(y)dy

(2.13)

and

v =

∫

Ωy
(1−Hφ(y)) · I(y)dy
∫

Ωy
(1−Hφ(y))dy

(2.14)
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2.4.5 Localizing Region-based Active Contour Model

A well-known framework used for localizing any region-based energy was proposed
by Lankton [15]. The use of localized energy enables to overcome the global energy
drawbacks that fails in segmentation of images with intensity inhomogeneity and dis-
continuous boundaries.

Let I ∈ Ω a gray level image, such that Ω ⊂ R
2 is a 2D image space. The closed

contour C is represented here by the zero level set of a signed distance function φ, with
C = {x|φ(x) = 0}. Any region-based energy can be formulated in localized way by
this framework as follows:

E(φ) =

∫

Ωx

δφ(x)

∫

Ωy

B(x, y) · F (I(y), φ(y))dydx (2.15)

+λ

∫

Ωx

δ(φ(x))||∇φ(x)||dx

where F (I(y), φ(y)) is a generic internal energy measure and B(x, y) represents a char-
acteristic function defining the local region according to a parameter r (radius). The
second term aims to penalize the curve arc-length in a weighting defined by the pa-
rameter λ.

Figure 2.2: Graphical representation of Localized active contour models.

The mentioned function B(x, y) is described by the red circle in Fig. 2.2 and the
blue curve represents the zero level set function. The blue area depicts the exterior
local region whereas the yellow part is the interior local region. A big radius allows
embedding more global information while a smaller value takes into account more
details. B(x, y) takes the value of 1 when the evaluated points y are located inside of a
circle of center x and radius r. It is defined as follows:

B(x, y) =

{

1, ||x− y|| < r

0, otherwise.
(2.16)

Finally, the evolution equation is formulated as follows:

∂φ

∂t
(x) = δφ(x)

∫

Ωy

B(x, y) · ∇φ(x) · F (I(y), φ(y))dy (2.17)

+λδ(φ(x))div

( ∇φ(x)

|∇φ(x)|

)

The proposed method and the materials used in this study are described in the next
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section.

2.5 Proposed method I: localized active contour model with

background intensity compensation

2.5.1 Patient image dataset

The experiments were carried out on a total of 312 slice images (3 real data: 79 slices
and 8 simulated data: 233 slices) from the MICCAI 2012 Challenge database. Tab. 4.1
shows in detail these data. Indeed, an enhanced visualization of the tumor and edema
edge or area is achieved by combining the information provided by the multimodal
images from this database. However, it is important to note that only T1C and T2 were
used here because this study was solely focused on brain tumor segmentation. As the
tumorous tissue and edema are highlighted in T2, a low percentage of T2 (defined by
κ) is necessary for enhancing the tumor visualization while limiting the increase of
edema intensity in T1C. Hence, they were fused by using the following equation

I = T1C + κT2 (2.18)

In this work a value of κ = 0.2 was experimentally selected in order to constraint the
edema contribution information.

Dataset No Patient Slices Total slices
1 57 - 100 44

BRATS 2 58 - 70 13
3 79 - 100 22
4 75 - 105 31
5 105 -135 31
6 105 - 130 26
7 115 -135 21

SimBRATS 8 75 - 110 36
9 95 - 120 26
10 80 - 110 31
11 86 - 116 31

Total 11 cases — 312

Table 2.1: Data from MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation Benchmark
used in this work. Patients 4 to 11 correspond to numbers 1, 2, 3, 5, 6, 7, 8, 9 in the SimBRATS.

2.5.2 Segmentation approach

Let I a given image to segment, If its foreground region and Ib its background region.
An additive region It i.e. It ⊂ If is referred as a target region. Fig. 2.3 presents these
regions and two possible configurations of the target placement.

The proposed model uses mean intensity for segmenting images. In fact, it is a
reformulation of the Lankton MS [15] model in which this study proposes to compen-
sate the background intensity in order to reduce the mean difference between If and
Ib. The intensity value used for compensation purpose is computed by using Eq. (2.25).
When the distance ||E(If )−E(Ib)|| increases (e.g. ||E(If )−E(Ib)|| > ||E(If )−E(It)||
and ||E(If )−E(Ib)|| > ||E(Ib)−E(It)||), the maximal intensity separation is found on
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their common boundary. In that case, the extraction of the target fails if it shares the
same boundaries with If and Ib as depicted in Fig. 2.3(a). There is not a big difference
between the results of Lankton MS model with the LACM-BIC when It is not close to
the borderline of If and Ib (Fig. 2.3(b)). However, by compensating the background in-
tensity the attracting force to the foreground-background separation was reduced, and
consequently, the active contour is quickly attracted to the desired border and the com-
putation time is reduced. This framework is robust and can handle properly images
with these illustrated configurations and magnetic resonance images in general. In ad-
dition, the proposed approach is suitable for medical image segmentation that have a
high mean intensity distance between the foreground and the background. Generally
they have a similar black background like in Fig. 2.3.

Figure 2.3: Illustration of 2 kinds of configuration: (a) the target region is located on the boundary of
the background and foreground. (b) it is situated on the center of the foreground.

The MS evolution equation can be reformulated in the localized way (LMS) i.e., in
the Lankton framework as follows:

∂φ

∂t
(x) = δφ(x)

∫

Ωy

B(x, y)δφ(y). (2.19)

(

(I(y)− ux)
2

Au
− (I(y)− vx)

2

Av

)

dy

+λδ(φ(x))div

( ∇φ(x)

|∇φ(x)|

)

where ux and vx are the localized mean intensities such as:

ux =

∫

Ωy
B(x, y) ·Hφ(y) · I(y)dy
∫

Ωy
B(x, y) ·Hφ(y)dy

(2.20)

and

vx =

∫

Ωy
B(x, y) · (1−Hφ(y)) · I(y)dy
∫

Ωy
B(x, y) · (1−Hφ(y))dy

(2.21)

Au and Av represent the local areas of the interior and exterior regions respectively.
They are defined by

Au =

∫

Ωy

B(x, y) ·Hφ(y)dy (2.22)

14



CHAPTER 2. BRAIN TUMOR SEGMENTATION IN PREOPERATIVE MR DATA

Av =

∫

Ωy

B(x, y) · (1−Hφ(y))dy (2.23)

We propose an alternative model less sensitive to the intensity distance between the
image foreground and background. The evolution equation of the proposed model is
formulated as follows:

∂φ

∂t
(x) = δφ(x)

∫

Ωy

B(x, y)δφ(y).

(

(I(y) + γM − ux)
2

Au
− (I(y) + γM − vx)

2

Av

)

dy

+λδ(φ(x))div

( ∇φ(x)

|∇φ(x)|

)

(2.24)

where γ is the background compensation parameter and M a binary mask. These
parameters are defined as follows:

γ = E{If − It} − ρ|E{If} − E{It}| (2.25)

M =

{

1, I(i, j) ∈ Ib

0, otherwise.
(2.26)

where ρ ∈ [0, 1] is a weighting compensation parameter and I(i, j) represents a pixel
of the image I at the coordinate (i, j). The proposed LACM-BIC becomes equal to the
Lankton MS model when γ is tuned as a zero constant value. In fact, If and Ib are
easily separable in MR images by using an automatic thresholding method because of
their high intensity difference. Therefore, due to its low computation time, the popular
Otsu thresholding algorithm [33] is used to obtain M .
The proposed method can be implemented by using the following algorithm:

Data: Parameters such as current iteration (It) and maximum iteration number
(Itmax)

Result: Final updated level set function
Initialize It = 0
Extract If and Ib by using an automatic thresholding method (e.g. Otsu

Method[33])
while (It ≤ Itmax) and (convergence criterion is not reached) do

Initialize the level set function φ
Update the local interior mean intensity by using Eq. (2.20)
Update the local exterior mean intensity by using Eq. (2.21)
Compute the intensity background compensation parameter γ by using
Eq. (2.25)

Update the level set function according to Eq. (2.24)
It = It+ 1

end
Algorithm 1: Algorithm of the proposed LACM-BIC in the level set formulation

2.5.3 Contour initialization and brain tumor segmentation

A special framework is introduced in this work with the aim to perform properly the
brain tumor segmentation task. It is composed by two main steps: (1) the abnormal
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growth cells detection by using the HCSD preceded by k-means algorithm and (2) its
contour delineation via the proposed LACM-BIC. A proper initialization of the ACM
is important so as to reach a good performance.

The HCSD is a binary shape descriptor based on hierarchical centroid. Proposed by
[30] for handwriting recognition, this descriptor was used in [34] for automatic brain
tumor detection in MRI data. As in [35, 36], for distinguishing structures based on their
forms, present approach considered that tumors have in general an ellipsoidal shape
compared to other brain structures. The HSCD was extracted from a cropped image
containing tumor and was considered as reference. Consequently, given a new input
image, after binarization step, the image was scanned by using a sliding window of
20% of the image size. The sliding window was moved forward in the manner to reach
an overlap of 50% between adjacent windows in rows and columns. The HSCD was
extracted from each window at every new position. Moreover, at the same time, the
Euclidean distance was computed between the obtained descriptor and the reference.
Finally, the tumor position was defined by the window that corresponds to the smallest
distance. In a similar context, HCSD is applied here for the ACM initialization as in [1].
More specifically, only the two biggest binary structures are retrieved from the images.
Then, based on their extracted HCSD, tumor structures are detected. Therefore, the
same technique will be used in this work for the LRACM initialization.

The aim of the clustering stage is to classify the MR image structures into 4 re-
gions such as: (a) Gray Matter (GM), (b) White Matter (WM), (c) black background
and Cerebrospinal Fluid (CSF), and (d) tumor. The choice of the k-means technique
was motivated by the a priori knowledge of cluster number and its low computational
complexity. Next, the image was binarized by keeping only pixels classified in the high
intensity cluster. But in general the obtained image contains other structures different
from the tumorous tissues, hence an additional step is necessary for selecting only tu-
mor structures in a binary image. At last, based on their pixel densities distribution,
only tumor structures were kept by using the HCSD. As soon as the tumor location is
detected, it is enclosed in a bounding-box. Then the ACM is initialized by a circular
curve centered on the bounding-box centroid c and with a radius equal to P/4, where
P is the perimeter of the bounding-box. Fig. 2.4 shows the tumor detection steps fol-
lowed by the active contour initialization.

The outline of the abnormal tissue is given by the final result of the active contour
model. By taking the advantage of using consecutive 3D slices, the final segmentation
result of one slice is used as the initialization of the next slice for boosting the speed.
However, additional steps are needed via a feedback process to ensure the ACM con-
vergence to the targeted object. Fig. 2.5 depicts the proposed segmentation scheme
using active contour models.
According to the previous description, the segmentation framework can be imple-
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Figure 2.4: Tumor detection and ACM initialization in the tumor segmentation process.

Figure 2.5: Flowchart of the segmentation process.

mented by using the algorithm presented below:
Data: Parameters such as current slice number (Ns), maximum slice number

(Ms), deformability degree allowed (th) and the Dice coefficient (D)
Result: Final contour
Initialize th = 0.8, D = th
while (Ns ≤ Ms) do

if (Ns is the number of the first slice) or (D < th) then
Use k-means and HCSD to detect tumor region
Initialize de ACM with a circle O(c, P/4)
Find the final contour

else
Initialize de ACM with the anterior final contour
Find the new final contour
Compute the Dice coefficient D between the new and the anterior final
contour

end

Ns = Ns + 1
end

Algorithm 2: Proposed segmentation approach algorithm
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The value of th defines the degree of deformability allowed between consecutive
slices. The value of 0.80 was experimentally selected in order to maintain the active
contour close to the desired region.

2.5.4 Experimental Results

In this section, the obtained results from segmentation approach that incorporate the
proposed active contour model formulation are discussed. The implementation was
done with an Intel Core i5 processor, 4 GB of memory using Matlab v.2011 tool. The
experiments were carried out on synthetic and medical images. Medical experiments
were carefully performed on the “BRATS 2012" database from the MICCAI 2012 Chal-
lenge on Multimodal Brain Tumor Segmentation Benchmark.

Four metrics were used for quantitatively evaluate the results i.e. the Dice coeffi-
cient (D), the Sensitivity (Sen), the Specificity (Spe) and the Hausdorff distance (dH ).

The majority of segmentation methods fails in extracting the desired region on im-
ages with background-foreground high mean intensity distance. Due to this, two syn-
thetic images were neatly selected with the goal to demonstrate how the proposed
method performs this task. In Fig. 2.6, an image with two possible targets on a low
intensity background is presented. The LACM-BIC approach enables to separate per-
fectly these two regions of interest according to the contour initialization. The fourth
column illustrates the results achieved by the proposed algorithm while the third
presents the Lankton MS method results. These outcomes show better performance
of the LACM-BIC compared to the Lankton model. Not only it outperforms the for-
mer, but also it is more flexible in adequate target selection.

Figure 2.6: Synthetic image with two target regions: (from left to right) input image, contour initial-
ization, Lankton MS result and proposed

Furthermore, another configuration is presented in Fig. 2.7. It is more similar to the
brain tumor image where there is a low intensity background, a foreground and finally
a target. The scalable and final results of the former LACM method are shown in the
first row and the proposed LACM-BIC are presented in the second. The columns one,
two and three show the contour initialization, the performance achieved on 10 itera-
tions and those reached in 50 iterations, respectively. We observed that the proposed
model find the desired area after 100 iterations whereas the LMS model was not able
to find it after 1000 iterations.
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Figure 2.7: Synthetic image illustrating a brain tumor. In row 1: (Lankton MS results from left to
right) the contour initialization, the result after 10 iterations, the result after 50 iterations and the result
after 1000 iterations. In rows 2: (Proposed results from left to right) the contour initialization, the result
after 10 iterations, the result after 50 iterations and the final result after 100 iterations.

The last phase of the experiment was carried out on simulated and real patient data
with single tumor apparition. With the purpose to obtain results with a fair compar-
ison, the same automatic active contour initialization as proposed in this study was
used for all experiments. The parameters setting of the localized C-V [15], localized
MS [15] and the LACM-BIC methods was done by using: α = 0.3, ǫ = 1, r = 8 and the
maximal number of iteration equal to 500. Moreover, the proposed method computes
automatically the background intensity compensation parameter γ (Eq. 2.25) and the
weighting value was tuned as ρ = 0.25. The LGDF and LBF were settled as recom-
mended in [37] and [18] for white matter segmentation in MR image, respectively.

Accuracy evaluation

Fig. 2.14 present some results obtained from real patient data with: (from left to right)
the Local Binary Fitting (LBF), the Local Gaussian Distribution Fitting (LGDF), the
localized Chan-Vese, the localized MS, and the proposed algorithm. It can be observed
that the final delineations of the proposed method is robust against the background
attraction where almost all the algorithms fails. The LBF method is not only sensitive
to the background attraction, but also to the tuning parameters (specially the kernel
scale parameter σ). In Fig. 2.15 other cases with simulated data are depicted. This
experiment reveals that the suggested model was again able to segment the tumorous
tissue more accurately than the comparative methods. We can clearly noticed that
when the tumor is located far away from the brain boundary, the segmented images
by the proposed LACM-BIC are almost the same with the traditional LMS model and
in some cases with the Localized C-V model (e.g. rows 1-4 for real patient data and
rows 2-4, 6 for simulated data). The LBF outputs are in many cases differents from the
other methods (see Fig. 2.14 rows 1, 2, 3, 5, 6 and Fig. 2.15 rows 1, 4, 5, 7) because this
model separates the non uniform tumor masses in different parts.

Table 3.2 summarizes the results obtained for each comparative methods in the seg-
mentation of 11 patient data i.e. 3 real data and 8 simulated data (a total of 312 images).
In majority of cases, the results obtained are similar for all the methods. Particularly,
when the tumor is located close to the background region, the suggested method has
demonstrated the capability of extracting accurately the target. It can be observed
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Figure 2.8: Segmentation results of real patient data: (from left to right) the Local Gaussian Distribu-
tion Fitting (LGDF), the localized Chan-Vese, the localized MS, and the proposed algorithm.

for patient 1 from real data (BRATS) where the proposed approach provides the best
rate of segmentation. The reached Dice measure was 0.9585 and the Hausdorff dis-
tance was 2.2976. However, the Dice rate values achieved by the comparative methods
were 0.5286, 0.8109, 0.8023 and 0.8577 for the LBF, the LGDF, Localized C-V and Local-
ized MS models, respectively; whereas their distances were 4.9470, 3.6048, 4.9108 and
3.9766. In addition, although the LACM-BIC outperforms the LBF, LMS and Localized
C-V models in the segmentation case of the patient 8 of simulated data (D = 0.8548 and
dH=2.8271), the LGDF performs better with the values of D = 0.8943 and dH=2.5759.
Similar results are observed for patient 2 of real data where D = 0.9393, dH = 1.8491
for LGDF and D = 0.9078 , dH = 1.8571 for the LACM-BIC. In general, the LGDF is
more complex than the MS model by the fact that it takes into account the local mean
intensity value and the corresponding standard deviation while the second considers
only the local mean intensity value. Nevertheless, the LGDF is more sensitive to its
parameters setting face up to a lot of heterogeneous image data. For this reason it out-
performs the proposed method and others mentioned only in particular cases of these
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Figure 2.9: Segmentation results of simulated patient data: (from left to right) the Local Binary FItting
(LBF), the Local Gaussian Distribution Fitting (LGDF), the localized Chan-Vese, the localized MS, and
the LACM-BIC method.
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experiments. Even if the LGDF can improve its performance by adapting its parame-
ters to each images kind, the background attraction will continue playing an important
role.

Table 2.10 presents the average and standard deviation (mean ± standard devia-
tion) of the performance of the suggested model and the comparative models. It can
be clearly seen that the proposed LACM-BIC achieves better performance than the
LBF, LGDF, localized C-V and, LMS models. For instance, the Dice coefficient value
of 0.9102 reached by the LACM-BIC was the highest obtained and its Hausdorff dis-
tance of 2.2968 was the lowest. Also, the experiments show that the proposed model
is characterized by the lowest standard deviation of the Dice index and the Hausdorff
distance what means that the results from all experiments are clustered around the
mean value. Additionally, its highest mean specificity value (Spe = 0.9980) reveals
that it can correctly classify healthy tissue more than the comparative methods. Its
mean sensitivity value (Sen = 0.9501) indicates that it can detect true tumor regions
in a competitive manner. On the whole, the LBF method is the technique that reached
poor results in these experiments.

The use of clustering techniques such as k-means, Fuzzy C-Means (FCM) and
Expectation maximization (EM) is sufficient for the initialization step (preprocessing
stage), but it is not enough for the brain tumor segmentation task in general. Table 2.4
shows the obtained average results by using the EM and FCM, and the outcome re-
veals their lower accuracy rate versus to the proposed method. On the other hand, this
table indicates also that the problem of high mean intensity distance between an image
foreground and its background cannot be resolved just by the image intensity normal-
ization. Although the intensity is normalized in the range of [0,255], the LACM-BIC
method still outperforms the LMS model.

Computation time comparison

It is visually presented in Fig. 2.10 and quantitatively in Table 2.5 that the intensity
background compensation allows to reduce the computation time (expressed in sec-
onds). Precisely, the proposed LACM-BIC consumes lesser time versus to the compar-
ative methods for accomplishing the required tumor segmentation task (an average of
448.5725 seconds per patient and 15.8150 seconds per image slice). The LBF was the
slowest method in suggested tests followed by the LGDF. In fact, due to its low de-
lineation accuracies and based on the Algorithm 2, the HCSD initialization is several
times performed and it has a consequence of increasing the computation time. The
image number label 1 to 3 in Fig. 2.10 refers to real patient data and from 4 to 11 the
simulated patient data. The curve behavior depicted in this figure shows the cumu-
lative computation time, which means the total time spent for segmenting the brain
tumor in patients data from image number 1 to 11.

2.5.5 Conclusions

In this work a framework for brain tumor image segmentation in multimodal MRI
data is presented. Specially, we proposed a localized active contour with background
intensity compensation (LACM-BIC) method which is adapted for handling images
with high mean distance between an image background and its foreground as in the
case of medical images. This technique was integrated in the previous framework for
extracting brain abnormal tissue. Unlike many approaches, a proper and automatic
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Table 2.2: Accuracy comparison of each patient (real and simulated) with different methods by using:
Dice, Sensitivity, Specificity and Hausdorff distance metrics. Patients 1 to 3 are from real data while
Patients 4 to 11 correspond to patient 1, 2, 3, 5, 6, 7, 8 and 9 from simulated data.

Patient Metric LBF [18] LGDF [19] C-V [15] LMS [15] Proposed

Patient 1

D 0.5286 0.8109 0.8023 0.8577 0.9585
Sen 0.5672 0.8844 0.9936 0.9904 0.9723
Spe 0.9777 0.9903 0.9751 0.9845 0.9979
dH 4.9470 3.6048 4.9108 3.9766 2.2976

Patient 2

D 0.8931 0.9393 0.9246 0.9077 0.9078
Sen 0.8084 0.8975 0.8652 0.8342 0.8345
Spe 1.0000 0.9999 1.0000 1.0000 1.0000
dH 1.8370 1.8491 1.8403 1.8816 1.8571

Patient 3

D 0.9045 0.9225 0.9590 0.9588 0.9588
Sen 0.8688 0.9466 0.9482 0.9368 0.9368
Spe 0.9987 0.9979 0.9994 0.9996 0.9996
dH 2.6060 2.4738 2.1230 2.0551 2.0551

Patient 4

D 0.9567 0.8055 0.9637 0.9671 0.9671
Sen 0.9222 0.7230 0.9834 0.9641 0.9641
Spe 0.9999 0.9996 0.9990 0.9995 0.9995
dH 2.0020 2.7570 2.0369 1.9429 1.9429

Patient 5

D 0.9528 0.8164 0.9498 0.9451 0.9454
Sen 0.9215 0.7627 0.9559 0.9343 0.9338
Spe 0.9999 0.9993 0.9993 0.9995 0.9995
dH 1.9620 2.6456 2.0149 2.0161 1.9817

Patient 6

D 0.7435 0.7265 0.7427 0.7617 0.7612
Sen 0.9460 0.9986 0.9998 0.9997 0.9997
Spe 0.9918 0.9909 0.9917 0.9925 0.9925
dH 3.1870 3.2321 3.1089 3.0071 3.0171

Patient 7

D 0.1066 0.7608 0.8212 0.8802 0.8802
Sen 1.0000 0.9865 0.9930 0.9825 0.9825
Spe 0.8342 0.9938 0.9960 0.9975 0.9975
dH 10.220 3.2169 2.6757 2.2684 2.2684

Patient 8

D 0.8394 0.8394 0.9302 0.9244 0.9289
Sen 0.7494 0.8929 0.8949 0.8748 0.8766
Spe 0.9997 0.9933 0.9991 0.9995 0.9997
dH 3.5620 3.5085 2.9224 2.8834 2.8691

Patient 9

D 0.8637 0.7923 0.8439 0.8850 0.8850
Sen 0.9824 0.9711 0.9938 0.9851 0.9851
Spe 0.9960 0.9933 0.9952 0.9969 0.9969
dH 2.6770 3.0520 2.6254 2.2987 2.2987

Patient 10

D 0.8406 0.8943 0.7495 0.8018 0.8548
Sen 0.9853 0.9752 0.9928 0.9887 0.9887
Spe 0.9952 0.9973 0.9895 0.9932 0.9957
dH 2.9590 2.5779 3.5954 3.2820 2.8271

Patient 11

D 0.9581 0.7266 0.9601 0.9642 0.9648
Sen 0.9322 0.5929 0.9865 0.9771 0.9771
Spe 0.9998 0.9997 0.9987 0.9990 0.9991
dH 1.8440 3.3147 1.9604 1.8639 1.8501
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Average and standard deviation of similarity measures
Methods Dice coefficient Sensitivity Specificity Hausdorff distance
LBF [18] 0.7807 ± 0.2556 0.8803± 0.1291 0.9812± 0.04919 3.4363 ± 2.4320
LGDF [19] 0.8213 ± 0.0725 0.8756± 0.1298 0.9959± 0.0036 2.9302 ± 0.5232
C-V [15] 0.8770 ± 0.0869 0.9643± 0.0452 0.9948 ± 0.0074 2.7104 ± 0.9187
LMS [15] 0.8958 ± 0.0676 0.9516± 0.0532 0.9965± 0.0048 2.4978± 0.6942
Proposed 0.9102 ± 0.0627 0.9501 ± 0.0518 0.9980 ± 0.0023 2.2968 ± 0.4248

Table 2.3: Average and standard deviation of similarity measures: the Dice index, Sensitivity, Speci-
ficity and Hausdorff distance

Similarity measures
Methods Dice coefficient Sensitivity Specificity Hausdorff distance
EM 0.7867 ± 0.1536 0.7556± 0.1470 0.9985± 0.0015 3.0480 ± 0.7542
FCM 0.7967 ± 0.1424 0.8275± 0.1550 0.9969 ± 0.0033 3.2823 ± 0.8320
LMS [0,255] 0.8980 ± 0.0679 0.9516± 0.0532 0.9972± 0.0030 2.4644± 0.5813
Proposed 0.9102 ± 0.06271 0.9501 ± 0.0518 0.9980 ± 0.0023 2.2968 ± 0.4248

Table 2.4: Average and standard deviation of similarity measures: the Dice index, Sensitivity, Speci-
ficity and Hausdorff distance of the EM, FCM, LMS with the intensity normalized in the range of 0-255
and the proposed method
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Figure 2.10: Cumulative computation time comparison of different methods on a set of 11 patient data
(in seconds).

Average of computation time in (s)
Measures LBF [18] LGDF [19] C-V [15] LMS [15] Proposed
Time/patient 849.8082 781.5818 455.7580 485.5883 448.5725
Time/image 29.9610 27.5558 16.0684 17.1201 15.8150

Table 2.5: Average computation time

contour initialization was introduced by using the k-means algorithm followed by the
Hierarchical Centroid Shape Descriptor (HCSD). Firstly, the tumor location is automat-
ically detected and it is enclosed in a bounding-box. The box centroid and a quarter
of its perimeter value are respectively used as center and radius of a circle used as ini-
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tial contour. Then, the segmentation is carried out via the proposed LACM-BIC. This
model is flexible and able to select an object target in presence of an imprecise initial-
ization. In this last case, the area highly covered by the initial contour is selected as
region to delineate.

Several experiments were carefully performed on a set of synthetic and medical
images. The influence of a high mean distance between an image background and its
foreground has been specially analyzed on the synthetic images for the segmentation
of a given target. The obtained results show that the proposed active contour model
achieves better performance than the local binary fitting, Chan-Vese and Yezzi mod-
els in the localized formulation of Lankton. We also compared the proposed model
against the comparative models on medical images from the widely known database
“BRATS2012". Four metrics were used for this purpose: the Dice coefficient, the speci-
ficity, the sensibility, and the Hausdorff distance. In spite of the visual inspection that
was in many cases enough for the evaluation, the quantitative assessment was per-
formed through the selected metrics. The outcomes demonstrate that the accuracy of
the proposed model outperforms the Chan-Vese, the Yezzi and the Wang models for
the tumor segmentation task. Moreover, it is important to notice that the LACM-BIC
formulation was able to perform the brain tumor segmentation task in the lowest com-
putation time compared to the former methods. Additional experiments were done
for comparing the clustering methods EM and FCM versus to the LACM-BIC, and the
results demonstrated that the proposed method achieves higher performance than the
clustering techniques. Also, it outperforms the LMS model even if the image intensity
is normalized. The proposed segmentation framework has advantages of being fast for
segmenting brain tumor in consecutive slices of a 3D volume and it can found an ap-
plication in images of other modalities such as computed tomography and ultrasound
that also have large black backgrounds. Thanks to the professor Lankton, Wang and
Li together with their co-authors for making available their source codes.

2.6 Proposed method II: Automatic selection of LRACM using

image content analysis for brain tumor segmentation

2.6.1 System description

The proposed system is based on the fact that the outcomes reached by different
LRACM, under the same conditions, are not the same. For instance, let Ω be the global
dataset s.t. Ω = A1 ∪ A2 · · · ∪ Ai where Ai represents the image subsets of Ω and i the
subset index. It is observed that one method can be better than the others for the given
subset A1 and another one could be the best for the subset A2 and so on. Likewise,
the segmentation results achieved in our previous work [1] showed that the LACM-
BIC outperforms in general comparative methods. However, for the images of the
considered patients, the Localized C-V [15] and LGDF [19] methods reached the best
results in three and two patient cases, respectively. Therefore, the automatic selection
task of an active contour model for a given input image set can allow to improve the
segmentation outcomes. Hence, a system that has to perform this selection based on
supervised learning techniques is proposed. It consists in two main stages, which de-
noted as training and testing steps. In the same fashion, the used dataset is split into
two parts, namely, training and testing sets. Sixty percent of dataset images is used
for training and the remainder forty percent for testing the designed system. Data are
grouped into three classes or subsets Ai (∀ i = 1, 2, 3) based on the ACM segmentation
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results achieved in [1]. Let I denote an input image, the selection of the algorithm
with the best expectation performance is achieved by extracting first n image features
{αj}nj=1 from I . Then, a classifier is employed to analyze the feature vector y ∈ ℜn in
order to predict the class to whom each I belongs. Any classifier can be integrated in
this framework, but currently the experiment will be carried out using the k-NN and
random forest (RF) classifiers. The system receives an input image I , then it extracts
the vector y that includes eight image features (y = α1, . . . , αn, n = 8) to describe the
image content. Lastly, the system has an output Z ∈ {1, 2, 3} that corresponds to the
label of the selected LRACM (1: LACM-BIC, 2: C-V and 3: LGDF).

Moreover, in the design of the system, it is assumed that 2D images of a 3D volume
acquired from a specific patient (i.e. under the same conditions, with the same scanner,
imaging protocol and acquisition parameters) share the same features. Consequently,
they can be grouped in the same subset Ai for which one a LRACM should be auto-
matically selected. In supervised learning, Ai is known as actual class or ground truth
(GT). Even if each 2D slice image will be separately classified in a predicted class Ci via
a label z ∈ {1, 2, 3}, the selection rule of the LRACM by the system should be carried
out in function of the 3D volume (image patient dataset). Let Pm be the image set of
the m-th patient and hmi the number of samples (slices) in a predicted class Cm

i subject
to

Pm = {Im1 , . . . , Imk } (2.27)

Cm
i = {Imk |g : Imk → ymk and f : ymk → z|z=i} (2.28)

hmi = #Cm
i (2.29)

where, k is the number of 2D images Im in the volume Pm, #Cm
i the cardinality of Cm

i ,
g the function that extracts feature vectors ymk = {ym1 , . . . , ymk |g : Imk → ymk } and the f
the decision function that attaches to ymk a class z. Two notations of labels are used,
z is the label of a slice Imk (or partial label), while Z is the final label assigned to the
volume Pm. Fig. 2.11 describes the selection process of the LRACM for brain tumor
segmentation in MRI data. Firstly, based on selection rules, the proposed system selects
the LRACM considered as the best for handling the volume Pm. Secondly, slices of Pm

are segmented by using the selected LRACM.
The class membership of Pm will be performed by using majority vote among im-

ages Imk , (m = 1, . . . , k), i.e. by looking for the largest hmi . This last part can be found
by computing the index of the most populous predicted class as

q = argmax
z∈{1,2,3}

{hmz } (2.30)

Also, the index q can be computed by using the prediction classification rate as

q = argmax
z∈{1,2,3}

{hmz /
3

∑

i=1

hmi } (2.31)

For example, the label Z = 1 will be attached to Pm if q = 1, and in details when

hm1 > hm2 ∩ hm1 > hm3 (2.32)
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Figure 2.11: Flowchart of the LRACM selection for brain tumor segmentation in MRI data. First, the
selection system selects the LRACM considered as the best for processing the volume Pm. Second, slices

of Pm are segmented by using the selected LRACM. Im
′

are the segmented images and Pm′

the output
volume.

or by using the prediction classification rate as

hm1 /

3
∑

i=1

hmi > hm2 /

3
∑

i=1

hmi ∩ hm1 /

3
∑

i=1

hmi > hm3 /

3
∑

i=1

hmi (2.33)

These last two rules (Eq. 2.32-2.33) are equivalents and they will lead to the same
result. However, the former equation (based on Eq. 2.30) is simple and faster than
second one in implementation, while the latter (based on Eq. 2.31) is preferred when
the classification rate evaluation is needed. In special cases, when no class receives
a majority of vote hmi , the selection rule will assign to Pm a class membership based
on prior probability. This last part is related to the class size. Moreover, by referring
to Table 4.1, it is clear that the size of class 1 is the biggest and the size of class 2 is
bigger than that of class 3. To illustrate this, if hm1 = hm2 > hm3 or hm1 = hm3 > hm2 or
hm1 = hm2 = hm3 , the selection rule will assign to Pm a class membership Z=1. Besides,
if hm2 = hm3 > hm1 , a label Z=2 will be then attached to Pm.

The selection rules of the proposed system can be implemented by using the fol-
lowing algorithm:
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Data: Parameters such as total patient number (pmax), current patient volume
(Pm,m = 1, . . . , pmax), total slice number (k), current slice (Ims , s = 1, . . . , k), slice
classification label (z) and the class index (i)

Result: the patient classification label (Z)
Initialize m = 1, s = 1, Cm

i = 0, hm
i = 0

while (m ≤ pmax) do
Read volume Pm

Extract k
while (s ≤ k) do

Extract feature vector yms
Classify yms by using the decision function f , s.t. f : ysk → z via a classifier
Update Cm

i by using Eq. (2.28) with i = z
end
for i=1,2,. . . ,3 do

Update hm
i = #Cm

i , see Eq. (2.29)
end
Find q, the index of the largest hm

z , by using Eq. (2.30) or Eq. (2.31)
Find the subset w that satisfy hm

q = hm
z , s.t. z ∈ w ⊆ {1, 2, 3}

if z = 1 ∈ w then
Z = 1

else if z = 2 ∈ w then
Z = 2

else
Z = 3

end
m = m+ 1

end

Algorithm 3: Algorithm of the proposed LRACM selection system where selection
rules are described

2.6.2 Feature extraction

Statistical features are used to numerically describe images and, they should provide
information to represent an overall scene. If the computed features are chosen carefully
to obtain the most representatives and discriminants, it is expected that the feature set
will extract the relevant information from the image. These features allow performing
the desired task exploiting a reduced representation instead of using the full image.
The features considered for this work are mainly related to the description of statistical
moments; eight features are then selected and evaluated. These statistical moment
features are listed in Table 2.6.

Table 2.6: Statistical features calculated on the M ×N monochromatic image I(x, y)

Feature Name Mathematical description
f1 Mean 1

MN

∑M
x=1

∑N
y=1 I(x, y)

f2 Harmonic mean MN∑M
x=1

∑N
y=1

1/I(x,y)

f3 Trimmed mean 1
M90%N90%

∑MP95

x=P5

∑NP95

y=P5
I(x, y)

f4 Maximum value max{I(x, y)}
f5 Median

(

MN+1
2

)th
term

f6 Standard deviation
√

1
MN

∑M
x=1

∑N
y=1 (I(x, y)− f1)

2

f7 Skewness
√
MN

∑M
x=1

∑N
y=1

(I(x,y)−f1)
3

(
∑M

x=1

∑N
y=1

(I(x,y)−f1)
2)

3/2

f8 Kurtosis MN
∑M

x=1

∑N
y=1

(I(x,y)−f1)
4

(
∑M

x=1

∑N
y=1

(I(x,y)−f1)
2)

2
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2.6.3 Patient Image Dataset

A total of 605 images were used in this study. These data consist in 312 images (or set
Γ1) from 11 patients taken into account in [1] and 293 additional images (Γ2) carefully
selected from the same patients. As previously mentioned, the data were divided into
two groups, training and testing sets. The testing image set (Γtest) is composed by
data from Γ1 excepting 70 images (Γ3) that were moved into the training set Γtrain.
These moved data concern patients for which ones most of all images containing the
tumor were already used in Γ1 (e.g. patients 1, 4, 5, 8, 9, 10 and 11). Thus, some data
describing the tumor were needed for the training set Γtrain. The training set includes
Γ2 and Γ3. The details of the dataset are presented in Table 4.1. It is important to note
that our dataset consists in a couple of MRI data from the MICCAI 2012 Challenge on
Multimodal Brain Tumor Segmentation Benchmark database organized by B. Menze,
A. Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. Van Leemput (http://www.imm.
dtu.dk/projects/BRATS2012, [7]).

Table 2.7: Data from MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation Benchmark
used in this work. The testing image set Γtest is a part of Γ1, which represents the number of images per
patient as used in [1]. Furthermore, Γ3 shows how many images were moved from Γ1 to the training set
Γtrain. Finally, it can be seen that Γtrain = Γ2 + Γ3.

Patient Γ1 [1] Γ3 Γtest Γtrain

1 44 15 29 49
2 13 - 13 19
3 22 - 22 33
4 31 10 21 34
5 31 10 21 32
6 26 - 26 39
7 21 - 21 21
8 36 10 26 32
9 26 5 21 24

10 31 10 21 45
11 31 10 21 35

Total images 312 70 242 363

2.6.4 Experimental Results

This section provides and discusses the experimental results obtained in the segmen-
tation of brain tumors with the proposed ACM selection system. Experiments were
carefully conducted on the "BRATS-2012" database from the MICCAI 2012 Challenge
on Multimodal Brain Tumor Segmentation Benchmark. Moreover, two binary metrics
were used for quantitatively evaluate the segmentation results, the Dice coefficient (D)
and the Hausdorff distance (dH ).

Selection system evaluation

As already mentioned, the K-NN and RF methods were employed for image classi-
fication by using the extracted features. Furthermore, the evaluation of the selecting
system was carried out by using the success rate (SR) [38] of image classification per
patient. Whereas, the number of samples misclassified was assessed by using the fail-
ure rate (FR). Largely used in supervised learning, confusion matrices were employed
to compute the SR and FR for each patient. In the confusion matrix, the predictions are
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found in the columns and the ground truth (GT) class in the rows. The GT indicates
the class of patient’s data based on the best ACM segmentation result reached in [1].
The percentages of classification rates are defined by

SR = 100× (Ncorrect/N) (2.34)

FR = 100× (Nwrong/N) (2.35)

where Ncorrect, Nwrong and N are the instances correctly classified, the instances mis-
classified and the total number of samples, respectively.

Figures. 2.12 and 2.13 present the confusion matrices of the patient image set clas-
sification by using the k-NN and RF classifiers, respectively. The bold values in the
main diagonal represent all instances correctly classified (Ncorrect). The row under
each confusion matrix indicates the classification rate in percentage (hmi=z/

∑3
i=1 h

m
i ,

z ∈ {1, 2, 3}) of image instances in each predicted class. The bold values represent the
success rates (in percentage) achieved in the images classification process. The other
values are the failure rates (in percentage and per class). The total FR is the sum of
failure rate of each class. Indeed, the selection made by the proposed system is suc-
cessful when SR is the highest classification rate value for a specific patient. On the
other hand, in the cases of system failure, the underlined value (FR) corresponds to the
selected class.

Table 3.1 describes the successes and failures of the automatic selector for the pa-
tient classes compared to the ground truth by using the k-NN and RF classifiers. The
class with the highest classification rate is selected as the expected prediction. Besides,
the selection is successful when the prediction is equal to the GT. Almost all patients ex-
cept patient 8, have been correctly classified by using the k-NN method. Additionally,
with the RF algorithm, eight out of eleven patients were properly chosen. In this con-
figuration, the selector based on k-NN showed better success rate than which based
on RF classifier. Nevertheless, the objectives of this research is not oriented to test-
ing classifiers but on the ACM selection system. By the way, another classifier (e.g.
Adaboost, Bayessian-based classifiers, Neural Networks, etc) can be integrated in this
framework. Notice that their performances rely mainly on the training samples quality
and the discriminant features extracted from the image [39, 40, 41].

Performance of the ACM selection system in brain tumor segmentation

The aim of this work was to show that object segmentation by using ACM is image
content dependent. A system for the selection of the best ACM based on image content
was designed. Experiments were conducted in two main steps. Firstly, brain tumors
were segmented in the image set of each patient by using the LGDF, C-V and LAC-BIC
methods. Thenceforth, for the same patient image set, the selection of the best method
among the three was performed. Table 3.2 presents the quantitative results reached
by the ACM selection method and the ACM individually considered. These results
come from the selection task achieved by the automatic selector and previously listed
in Table 3.1. It is clearly observed that, in the majority of cases, the best method for a
specific patient is correctly selected by the system. In order to have a global view of the
outcomes, the average values (mean ± standard deviation) are showed in Table 2.10.

The results reveal that the proposed selection system achieves higher performance
than comparative methods (i.e. D = 0.9115±0.0702, dH = 2.3288±0.4411 with RF and
D = 0.9160 ± 0.0654, dH = 2.2985 ± 0.4265 with k-NN). Figs 2.14 and 2.15 depict the
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1 2 3 1 2 3 1 2 3

1 29 0 0 1 0 0 0 1 0 0 0

2 0 0 0 2 0 0 0 2 0 22 0

3 0 0 0 3 3 0 10 3 0 0 0

Classification rate/class 100 0 0 23.07 0 76.92 0 100 0

1 2 3 1 2 3 1 2 3
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Figure 2.12: Confusion matrix of patient image set classification using k-NN algorithm where the
labels represent 1: LACM-BIC, 2: C-V and 3: LGDF. The bold values in the main diagonal represent all
instances correctly classified. The row under each confusion matrix shows the classification rate achieved
for each predicted class.

Table 2.8: Classification rate used to find the predicted class for each patient. The class with the highest
classification rate is selected as the estimated prediction. Likewise, the selection is successful when
prediction is equal to GT. The bold values represent the highest classification rate reached among the
three classes and they define the class to be selected.

Classification rate/class Classification rate/class
Patient RF k-NN Predictions GT

1 2 3 1 2 3 RF k-NN
1 96.55 0.000 3.400 100.0 0.000 0.000 1 1 1
2 15.38 0.000 84.61 23.07 0.000 76.92 3 3 3
3 0.000 100.0 0.000 0.000 100.0 0.000 2 2 2
4 80.95 19.04 0.000 95.23 4.760 0.000 1 1 1
5 66.66 33.33 0.000 28.57 71.42 0.000 1 2 2
6 100.0 0.000 0.000 84.61 15.38 0.000 1 1 1
7 85.71 14.28 0.000 80.95 14.28 4.760 1 1 1
8 92.30 7.69 0.000 65.38 34.61 0.000 1 1 2
9 100.0 0.000 0.000 66.66 19.04 14.28 1 1 1

10 61.90 0.000 38.09 28.57 0.000 71.42 1 3 3
11 85.71 4.760 9.500 80.95 4.760 14.28 1 1 1

results achieved by using the LGDF, C-V, LAC-BIC and the selecting system. The label
of the selected active contour method is showed on the images in the selector column.
Visual results sustain the quantitative evaluation where the LACM-BIC, followed by
the C-V method, reached better performances than the LGDF model. Especially, in the
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1 2 3 1 2 3 1 2 3
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Figure 2.13: Confusion matrix of patient image set classification using random forest algorithm where
the labels represent 1: LACM-BIC, 2: C-V and 3: LGDF. The bold values in the main diagonal represent
all instances correctly classified. The row under each confusion matrix shows the classification rate
achieved for each predicted class.

case of patient 1, it can be clearly observed that LACM-BIC is suitable for handling
images where the target shared the border with the background and foreground.

2.7 Proposed method III: Active Contours Driven by Cuckoo

Search Strategy for Brain Tumor Images Segmentation

2.7.1 Cuckoo Search algorithm

Cuckoo Search is a bio-inspired optimisation technique that mimics the brood para-
sitism behaviour of many species of cuckoos. CS was proposed by [42] as a way to
exploit some features from swarm intelligence, such as diversification and intensifi-
cation, through random walks and Lévy flights. The basic idea of CS consists in the
laying of an egg by each cuckoo and hides it in an alien nest. At the beginning, a given
number of nests are randomly chosen. Thereafter, only the best nest (with luckiest egg
or best solution) shall prevail for next generation, x∗. Nests with poorer solutions (xti)
are replaced with new eggs, or with solutions from some available nests (xt+1

i ) using a
Lévy flight, as

xt+1
i = xti + ζν(xti − x∗), (2.36)

where ζ > 0 is the step size and its value is related to the size of the search space of the
problem; xti = (xti,1, . . . , x

t
i,d)

T is the i-th solution at generation t with d components (or
dimensions of the search space); and ν is a random number obtained from Mantegna’s
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Figure 2.14: Segmentation results of MRI data from patients 1 to 6: (from left to right) the Local
Gaussian Distribution Fitting (LGDF), the localized Chan-Vese (C-V), the Localized Active Contour
Model with Background Intensity Compensation (LACM-BIC), and the proposed algorithm.
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Table 2.9: Accuracy comparison of each patient with different methods by using: Dice and Hausdorff
distance metrics.

Patient Metric LGDF [19] C-V [15] LACM-BIC [1] Selection (RF) Selection (k-NN)

1
D 0.8159 0.7833 0.9618 0.9618 0.9618
dH 3.3200 5.2736 2.3678 2.3678 2.3678

2
D 0.9401 0.9246 0.9077 0.9401 0.9401
dH 1.8202 1.8403 1.8571 1.8202 1.8202

3
D 0.9252 0.9590 0.9588 0.9590 0.9590
dH 2.3588 2.0550 2.1229 2.0550 2.0550

4
D 0.8721 0.9658 0.9687 0.9687 0.9687
dH 2.5413 1.8367 1.8081 1.8081 1.8081

5
D 0.6987 0.9738 0.9721 0.9721 0.9738
dH 3.2288 1.9348 2.0021 2.0021 1.9348

6
D 0.7062 0.7252 0.7602 0.7602 0.7602
dH 3.4082 3.3463 3.0170 3.0170 3.0170

7
D 0.7781 0.8203 0.8619 0.8619 0.8619
dH 2.8781 2.6834 2.4012 2.4012 2.4012

8
D 0.8645 0.9316 0.9291 0.9291 0.9291
dH 3.5260 2.9321 2.9861 2.9861 2.9861

9
D 0.8156 0.8601 0.8938 0.8938 0.8938
dH 2.9599 2.6702 2.4067 2.4067 2.4067

10
D 0.8676 0.6966 0.8197 0.8197 0.8676
dH 2.5048 3.7618 2.7707 2.7707 2.5048

11
D 0.6637 0.9502 0.9602 0.9602 0.9602
dH 3.3411 2.0866 1.9819 1.9819 1.9819

Table 2.10: Average and standard deviation of similarity measures: the Dice index and Hausdorff
distance

Average and standard deviation of similarity measures
Methods Dice coefficient Hausdorff distance
LGDF [19] 0.8134 ± 0.0927 2.8988 ± 0.5364
C-V [15] 0.8719 ± 0.1011 2.7655 ± 1.0506
LAC-BIC [1] 0.9085 ± 0.0696 2.3383± 0.4331
Selection (RF) 0.9115 ± 0.0702 2.3288 ± 0.4411
Selection (k-NN) 0.9160 ± 0.0654 2.2985 ± 0.4265

algorithm using a symmetric Lévy stable distribution [43, 44]. Equation (2.37) shows
the basic form of Mantegna’s algorithm,

ν = z|y|−1/ρ (2.37)
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Figure 2.15: Segmentation results of MRI data from patients 7 to 11: (from left to right) the Local
Gaussian Distribution Fitting (LGDF), the localized Chan-Vese (C-V), the Localized Active Contour
Model with Background Intensity Compensation (LACM-BIC), and the proposed method.

where ρ ∈ [0.3, 1.99] is a parameter of distribution and, z and y are random variables
with normal distributions N (0, σz) and N (0, 1), respectively. σz is obtained with

σz =





Γ(ρ+ 1) sin
(πρ

2

)

ρΓ
(

ρ+1
2

)

2(ρ−1)/2





1/ρ

, (2.38)

since Γ(·) is the Gamma function.
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Additionally, if some cuckoo eggs are discovered by the host bird, then cuckoos
have to find other available nests to hide their new eggs or candidates of solution. This
event can occur with a probability of pa ∈ U(0, 1), for a defined number of nests, and
new solutions are calculated using,

xt+1
i = xti + uµ(u − pa)(x

t
j − xtk), (2.39)

where u = (u1, . . . , ud)
T is a uniformly distributed random vector with size d× 1; µ(·)

is the Heaviside function [44]; xt+1
i is the i-th new solution and xti is the i-th current

solution; and xtj and xtk are two different solutions randomly chosen, j 6= k. The above
process is done for a defined number of generations or iterations, until it reaches a stop
criterion. The CS method is presented in Algorithm 4.

Data: Objective function f(x), x = (x1, . . . , xd)
T

Parameters such as nests (Na), probability (pa), step size (ζ),
maximum generation number (M ) and stop criterion (if it exists)
Result: Best solution, x∗ = argmin

X
{f(x)}

Initialise Na host nests as xi ∀ i = 1, . . . , Na, and make t = 0.
while (t < M ) and (stop criterion is not reached) do

t = t+ 1
For each host nest, calculate randomly by Lévy flights its new value (xi) with
(2.36),

and its fitness (f(xi))
if New fitness is better than previous one then

Update by new solution
else

Maintain previous solution
end

Build a new nest if it is discovered, with (2.39)
Find the current best solution

end
Algorithm 4: Cuckoo Search Algorithm

2.7.2 Tumor segmentation approach

An active contour problem is solved traditionally through a deterministic iterative
method such as gradient descent [13]. But some non-deterministic modern strategies
are also implemented to solve this problem. One of them is the multi-population strat-
egy proposed by [45], which employs Particle Swarm Optimisation (PSO) algorithm
and Rectangular Shaped Search Windows (RSSW). In general, the multi-population
strategy can be implemented with several optimisation techniques and different ge-
ometries for the search windows. However, in this work Cuckoo Search algorithm is
used as optimiser, which gives place to the so-called Multi-population Cuckoo Search
Strategy (MCSS), and a windows shape alternative is proposed, i.e., Pizza-slice Shaped
Search Windows (PSSW). Thus, the MCSS and the above mentioned search window
geometries are described as follows.

Let Pi be the i-th control point (or snaxel) of an active contour (or snake), defined
as Pi(s, t) = (x(s, t), y(s, t))T , inside of the i-th search window (SWi) with s ∈ [0, 1]
and t is the time. And let qi,j be the j-th candidate to control point in the i-th search
window. Local energy function for each candidate in a given search window is defined
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as

Ei,j =
1

2

(

α‖Pi+1 − qi,j‖2 + β‖Pi+1 − 2qi,j + Pi−1‖2
)

,
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∣
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∣

∣

∣

qi,j

,

(2.40)

where α, β, γline, γedge and γterm are weight factors, and the external energy compo-
nents are evaluated at the candidate position qi,j via an interpolation process.

Using (2.40) we can set an optimisation problem for each search window, as is
shown,

ki = argmin
j

{Ei,j}, j ∈ {1, . . . , Na} ⊂ SWi, (2.41)

where ki is the best index such as qi,ki
is the best candidate with minimum local energy,

and Na is the number of candidates in SWi. Therefore, the i-th control point shall be
updated with qi,ki

, Pi = qi,k1
. Equation (2.41) is solved for all Np snaxels of the active

contour using Cuckoo Search algorithm (or another optimisation method). Thus, total
snake energy is estimated through the next equation [45],

Esnake ≈
Np
∑

i=1

Ei,ki . (2.42)

Finally, the above process is repeated until the total snake energy becomes stable,
i.e, the energy value is the same or decreases slightly per each repetition or iteration.
The overall process is summarised in Algorithm 5.

Data: Optimisation method (i.e., Cuckoo Search) and initial active contour
(Snake)

Result: Best active contour
Initialise parameters of the optimisation method
while (is evolving) do

for (each control point Pi, i = 1, . . . , Np) do
Set the window for Pi and define each Pi as the best solution for each
search window

Perform an optimisation process to solve (2.41)
Update Pi with qi,ki

end

end
Algorithm 5: Multi-population Cuckoo Search Strategy (MCSS)

Furthermore, in order to implement the multi-population strategy, two geometries
for search windows are described as follows, i.e., RSSW and PSSW. Figure 2.16 shows
an illustrative example of these two geometries.
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Figure 2.16: Illustrative example of (a) Rectangular Shaped Search Window (RSSW) and (b) Pizza-slice
Shaped Search Window (PSSW).
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2.7.3 Using Rectangular Shaped Search Windows (RSSW)

Let Wi be a rectangular shaped search window defined by

Wi(Pi,∆w) = {qi,j |‖qi,j − Pi‖1 �R2 ∆w}, (2.43)

where Pi = (Pi,x, Pi,y)
T is the i-th control point (or centre point of the search window),

and ∆w = (∆wx,∆wy)
T ∈ R

2
++ is a vector with half side lengths of the search window

as components (cf. Figure 2.16.a).
Moreover, sometimes certain snaxels could be as close as to share their search space,

thus generating unsuitable new control points, therefore an additional condition is
required to preserve the snake structure. In order to avoid this issue, each candidate to
a new control point must meet the following condition,

|‖Pi−1 − qi,j‖ − ‖Pi+1 − qi,j‖| < ǫ, (2.44)

where ǫ is constant value between 0.5 and 1 [45].

2.7.4 Using Pizza-slice Shaped Search Windows (PSSW)

Let Si be a pizza-slice shaped search window defined by

Si(Pc, φl, φu) = {qi,j |φl ≤ ∠(qi,j − Pc) ≤ φu}, (2.45)

where Pc = (Pc,x, Pc,y)
T is the centroid point and, φl and φu are the lower and upper

angles that delimit the polar section, respectively (cf. Figure 2.16.b). For this kind of
search window, unlike RSSW, an additional condition is unnecessary.

2.7.5 Experimental Results and Discussion

The results discussed in this section were obtained from the proposed method
implemented in a personal computer with the following specifications: CPU
Intel R© PentiumTM 1.9 GHz, 4 GB of RAM, Microsoft R© WindowsTM 10, 64-bit oper-
ating system, and MathWorks R© MatlabTM R2014b platform. At first, all tests were
performed for a set of common synthetic test images and, thereupon, for a set of T1-
weigted MR images containing brain tumors.

At the beginning, a process of adjusting was performed for all the images before
applying the active contour model based strategies. This process consisted of a noise
removal step using a median filter with a 3× 3 window size. It is followed by the edge
detection using the Canny filter. Subsequently, aiming to improve the convergence of
the active contour methods, a segmentation process was carried out via a Euclidean
distance map, computed from the concerned images [46].

In order to demonstrate the effectiveness of the proposed method, the ACM
driven by Particle Swarm Optimisation (PSO) was implemented as a Multi-population
Particle Swarm Optimisation Strategy (MPSOS). Based on their performances, the
proposed Multi-population Cuckoo Search Strategy (MCSS) was compared against
the traditional active contour formulation (using the gradient descent) and MPSOS.
Metaheuristic-based multi-population strategies (MCSS and MPSOS) were carried out
with a number of 50 agents (nests or particles, respectively), using both geometries of
search windows—RSSW with a window size of 40 × 40 pixels and PSSW with a po-
lar section of 2π/Np radians. The assessments of the ACM strategies were performed
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Figure 2.17: (a) Initial contour for a symmetric cross image, and contours obtained via (b) traditional
active contour method and, (c) MPSOS-RSSW, (d) MCSS-RSSW, (e) MPSOS-PSSW and (f) MCSS-
PSSW.

through three similarity metrics, i.e, Jaccard coefficient (J), Dice coefficient (D) and
Hausdorff distance (dH).

2.7.6 Synthetic test images

Two synthetic images (i.e., a cross and a star) were selected in order to perform the ex-
periments, which were repeated 10 times for statistical purposes, using α = 0.004 and
β = 0.001. The external energy components for the synthetic cross image were set as
γline = 0.8, γedge = 0.1 and γterm = 0.6, and for the synthetic star image as γline = 0.6,
γedge = 0.8 and γterm = 0.2. Figure 2.17 presents the segmentation results of a sym-
metric cross of size 252 × 252 pixels with 50 control points (Np = 50), achieved by
the traditional technique and the multi-population strategies. All the ACM processes
were initialised with the contour showed in Figure 2.17.a. At first glance, it is noticed
that contours found by the multi-population strategies (Figure 2.17.c-f) are closer to the
cross boundary than the one reached by the traditional technique (Figure 2.17.b). In ad-
dition, PSSW (cf. Figure 2.17.e-f) enhances the capability of the multi-population tech-
niques to envelope better the object compared to RSSW (cf. Figure 2.17.c-d). Table 2.11
shows the performance reached by the studied ACM techniques. For this experiment,

Table 2.11: Jaccard, Dice and Hausdorff distance rates obtained from the optimal contour of the syn-
thetic cross image reached using the ACM strategies, i.e., the traditional technique and multi-population
methods (MPSOS and MCSS) with RSSW and PSSW

Strategy
J D dH Time (s) Iterations

(AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD) (AVG±SD)

Traditional 0.8823±0.0 0.9375±0.0 7.4162±0.0 86.2±80.4 90±0
MPSOS-RSSW 0.9436±1.3 0.9710±0.6 5.4863±28.6 131.1±71.2 24±3
MCSS-RSSW 0.9392±3.1 0.9687±1.6 5.4407±575.7 186.5±106.9 30±4
MPSOS-PSSW 0.9474±2.3 0.9730±1.2 5.4399±90.4 109.8±56.0 11±2
MCSS-PSSW 0.9476±2.8 0.9731±1.4 5.3837±133.3 119.7±65.4 24±6

traditional snake was the fastest by spending an average time of 86.2 s for achieving
its best contour, whilst the MCSS-PSSW was the most accurate with an average metric
values of J = 0.9476, D = 0.9731 and dH = 5.3837.
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The second ACM experiment consisted on the segmentation of an horizontally
symmetrical synthetic star of size 413 × 420 pixels, employing 70 control points for
its initialization, as is shown in Figure 2.18.a. Its resulting contours, attained through
the traditional and the multi-population methods, are displayed in Figure 2.18.b-f. It

Figure 2.18: (a) Initial contour for a horizontally symmetrical star image, and contours obtained via (b)
traditional active contour method and, (c) MPSOS-RSSW, (d) MCSS-RSSW, (e) MPSOS-PSSW and
(f) MCSS-PSSW.

can be observed that the use of multi-population techniques improves the ACM be-
haviour in the segmentation task. Furthermore, in order to support the previous claim,
a quantitative comparison of the proposed technique against the traditional and MP-
SOS methods, using the preselected metrics (Jaccard, Dice and Hausdorff rates), is
presented in Table 2.12. Once more, the gradient descent method has required the
shortest time (94.8 s) to evolve towards the object boundary. In addition, MCSS-PSSW
performed better the star segmentation with accuracy values of J = 0.9631, D = 0.9812
and dH = 4.1351.

Table 2.12: Jaccard, Dice and Hausdorff rates obtained from the optimal contour of the synthetic star
image reached using the ACM strategies, i.e., the traditional technique and multi-population methods
(MPSOS and MCSS) with RSSW and PSSW.

Strategy
J D dH Time (s) Iterations

(AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD) (AVG±SD)

Traditional 0.9438±0.0 0.9711±0.0 7.4833±0.0 94.8±102.0 81±0
MPSOS-RSSW 0.9534±3.1 0.9761±1.6 4.3498±446.4 631.7±343.2 41±3
MCSS-RSSW 0.9559±1.1 0.9775±0.5 3.8312±155.1 849.0±483.0 45±4
MPSOS-PSSW 0.9621±1.3 0.9807±0.7 4.1829±63.0 372.1±184.5 11±2
MCSS-PSSW 0.9631±0.1 0.9812±0.1 4.1351±37.8 454.0±250.6 26±6

Indeed, in the cases of these two synthetic images, it was observed that the metric
value results are consistent with contours observed in Figure 2.17.f and Figure 2.18.f.
On the other hand, it is noticed that Pizza-slice Shaped Search Windows, for both MP-
SOS and MCSS, enhance the control points capability to detail vertices at concavities
of the object boundary.
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2.7.7 Medical test images

Magnetic Resonance Images (512 × 512 pixels) of 10 patients with brain tumors have
been selected in order to test and compare the ACM strategies i.e., traditional active
contour method, MPSOS and MCSS with RSSW and PSSW. Five consecutive MRI slices
per patient giving a total of 50 images were used in this experiment. Tests were done
by using 50 control points (Np = 50), α = 0.001, β = 0.009, γline = 0.6, γedge = 0.8
and γterm = 0.4. Figure 2.19 presents 10 examples of brain tumor segmentation for
each patient case, categorised into two types of tumors: glioblastoma (tumors 1, 2, 5,
8 and 9) and metastasis (tumors 3, 4, 6, 7 and 10). The first column shows initial con-
tours used by each experiment and, from the second to the fifth column are presented
the results obtained by the traditional ACM technique, MPSOS-RSSW, MCSS-RSSW,
MPSOS-PSSW and MCSS-PSSW, respectively.

As mentioned at the beginning of this section, for all ten patient cases selected,
five consecutive slices per patient with tumor were segmented by using the proposed
method and comparative ones. Hence, for each patient, Table 2.13 depicts average
metric values of these five tumors segmentations obtained by using the analysed ACM
strategies. In comparison to the original snake formulation, the tests demonstrated an
accuracy improvement in the use of multi-population methods in general, and spe-
cially by using the pizza-slice shaped search windows. Furthermore, for all tests done,
the snake in its original formulation was in general the fastest whilst the MCSS-PSSW
was the more accurate in most of cases. Table 2.14 shows the summary results of med-
ical images segmentation through the metrics selected. An average of 74 iterations
and 152.5 seconds was spent by the original snake formulation for solving the total
snake energy minimisation problem. Although it was found as the fastest, it was clas-
sified as the less accurate with J = 0.8005, D = 0.8867 and dH = 3.6193. Then, the
ACM driven by MPSOS through the RSSW (J = 0.8514, D = 0.9181 and dH = 3.2101)
was outperformed by the ACM driven by MCSS through the RSSW with J = 0.8556,
D = 0.9207 and dH = 3.2025. Also, the methods assessment revealed an accuracy im-
provement of the MPSOS-PSSW outcomes (J = 0.9067, D = 0.9506 and dH = 2.5972)
by using the MCSS-PSSW which was found as the best one (J = 0.9158, D = 0.9594
and dH = 2.5792). Likewise, it is crystal clear that the original snake formulation was
faster than the multi-population strategies.

In Figure 2.20 relative computational times (RCT), considering classic gradient
descend ACM as a reference, are presented. It is observed the proposed method
uses the lowest RCT compared against other implemented methods (i.e., MPSOS-
RSSW, MPSOS-PSSW and MCSS-RSSW). Whilst the most time demanding algorithm
is MPSOS-PSSW. It is interesting to emphasise RCT follow a linear regression with re-
spect to control points for all studied multi-population strategies. Particularly, MPSOS-
RSSW, MCSS-RSSW and MCSS-PSSW have a similar tendency which means the re-
quired computational time is almost the same. Moreover, all implemented multi-
population strategies spent proportional times with respect to the traditional tech-
nique. These proportional parameters depend on the control points, which were es-
timated and displayed in Figure 2.20.
Besides, as an additional study, six images of tumors with non-ovoid (or non-round)

shapes were chosen to test the effectiveness of the proposal methodology. This kind of
shapes is usually associated to malignant tumors, thus a detailed segmentation of these
could avoid several post-surgery complications. Figure 2.21 shows the results achieved
by segmenting the irregular tumor shape images through the multi-population strate-
gies and the traditional method. It is visually evident that the multi-population strate-
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Figure 2.19: Example of brain tumor images. Columns are organised for each tumor image as: ini-
tial contour, and contours obtained using the traditional technique, MPSOS-RSSW, MCSS-RSSW,
MPSOS-PSSW and MCSS-PSSW techniques.
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Table 2.13: Jaccard, Dice, Hausdorff, Computation time and iterations rates with their standard devia-
tions obtained from the optimal contour of tumors in MRI images reached by using the ACM strategies,
i.e., the traditional technique and multi-population methods (MPSOS and MCSS) with RSSW and
PSSW. The expert is the neurosurgeon of the University Hospital, Department of Neurosurgery, Uni-
versity of Leipzig (Germany)

Strategy J D dH Time (s) Iterations
(AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD) (AVG±SD)

1

Traditional 0.7443±80.7 0.8514±52.7 4.2358±1035.0 291.9±15.4 97±73
MPSOS-RSSW 0.8119±90.5 0.8940±54.6 3.6520±1257.0 506.0±17.3 6±1
MCSS-RSSW 0.8240±99.6 0.9009±59.9 3.6979±1287.0 557.7±19.0 9±1
MPSOS-PSSW 0.9471±6.9 0.9728±3.6 2.2472±433.1 692.3±24.1 7±2
MCSS-PSSW 0.9469±8.2 0.9727±4.3 2.2408±472.6 355.0±11.9 5±1

2

Traditional 0.8953±20.9 0.9446±11.6 2.7897±148.9 250.1±13.3 121±65
MPSOS-RSSW 0.9042±25.0 0.9496±13.9 3.1657±472.3 451.3±15.4 5±1
MCSS-RSSW 0.8987±16.4 0.9466±9.1 3.1041±453.5 496.6±18.5 8±1
MPSOS-PSSW 0.9363±8.5 0.9671±4.5 2.4240±394.2 612.9±24.0 7±3
MCSS-PSSW 0.9369±9.9 0.9674±5.2 2.5077±372.9 317.4±11.9 4±0

3

Traditional 0.7178±54.4 0.8348±36.7 4.3002±621.1 212.2±9.8 65±78
MPSOS-RSSW 0.7767±80.7 0.8725±50.9 4.4790±650.7 391.0±20.8 6±1
MCSS-RSSW 0.7939±52.4 0.8843±32.2 4.3570±877.7 439.8±16.2 8±1
MPSOS-PSSW 0.9282±25.4 0.9626±13.8 2.6707±764.4 542.6±21.4 5±1
MCSS-PSSW 0.9252±26.3 0.9610±14.4 2.6707±764.4 274.7±14.0 5±1

4

Traditional 0.7691±66.6 0.8682±42.2 3.2552±504.4 138.9±14.5 64±78
MPSOS-RSSW 0.7701±72.8 0.8686±46.5 3.3865±815.3 235.4±15.5 5±1
MCSS-RSSW 0.8298±87.0 0.9050±51.5 2.7829±263.6 270.3±18.6 9±3
MPSOS-PSSW 0.9036±51.8 0.9487±29.3 2.2663±283.0 330.3±23.5 7±3
MCSS-PSSW 0.9058±49.2 0.9500±27.7 2.3089±293.2 157.0±10.4 4±0

5

Traditional 0.8305±45.9 0.9069±27.5 3.5337±625.5 56.2±12.8 94±77
MPSOS-RSSW 0.8798±59.5 0.9352±34.7 2.6472±490.2 87.9±14.3 6±1
MCSS-RSSW 0.9019±18.0 0.9483±10.0 2.5337±689.7 93.4±17.5 9±1
MPSOS-PSSW 0.8923±23.7 0.9429±13.3 2.8762±399.0 115.3±21.3 7±3
MCSS-PSSW 0.9199±21.9 0.9708±12.2 2.9060±489.4 56.4±9.4 4±1

6

Traditional 0.8587±23.6 0.9239±13.7 3.1143±355.5 188.4±12.0 64±79
MPSOS-RSSW 0.8700±37.4 0.9302±21.3 3.0566±266.7 332.3±16.4 5±1
MCSS-RSSW 0.8582±32.2 0.9234±18.7 2.9295±149.8 385.2±19.5 8±1
MPSOS-PSSW 0.8538±29.7 0.9209±17.4 3.0526±319.8 479.7±19.4 7±4
MCSS-PSSW 0.8851±31.6 0.9508±18.5 2.9529±378.3 235.6±13.0 4±1

7

Traditional 0.7878±83.4 0.8793±54.6 2.5216±549.3 117.5±11.6 94±76
MPSOS-RSSW 0.8379±61.9 0.9108±36.5 2.1884±513.7 188.9±14.7 6±1
MCSS-RSSW 0.8298±67.7 0.9058±40.2 2.2753±727.1 212.4±16.2 8±1
MPSOS-PSSW 0.8512±38.4 0.9193±22.4 2.0408±209.1 258.0±20.4 7±2
MCSS-PSSW 0.8827±39.7 0.9493±23.0 1.9493±336.2 126.3±9.0 4±1

8

Traditional 0.8674±74.3 0.9275±44.9 4.1852±596.1 165.6±2.2 11±5
MPSOS-RSSW 0.9012±27.6 0.9479±15.4 4.0182±260.6 283.5±15.4 5±1
MCSS-RSSW 0.9049±22.0 0.9499±12.3 3.9357±371.4 328.9±19.1 9±2
MPSOS-PSSW 0.9249±9.1 0.9610±4.9 3.5465±527.6 402.0±24.8 7±2
MCSS-PSSW 0.9245±10.2 0.9608±5.5 3.5210±502.8 192.2±12.7 4±1

9

Traditional 0.7803±129.1 0.8716±85.6 4.009±640.4 81.3±7.2 38±63
MPSOS-RSSW 0.8942±54.5 0.9435±30.6 2.9664±707.7 137.0±16.9 5±0
MCSS-RSSW 0.8560±117.8 0.9187±73.6 3.3151±873.3 155.3±20.0 9±1
MPSOS-PSSW 0.9301±13.8 0.9637±7.4 2.4461±144.9 188.9±25.7 6±1
MCSS-PSSW 0.9304±15.1 0.9639±8.0 2.4034±172.5 93.4±11.9 5±1

10

Traditional 0.7534±60.4 0.8583±39.0 4.2488±827.3 22.7±10.5 95±75
MPSOS-RSSW 0.8680±48.2 0.9288±27.7 2.5416±418.4 33.4±18.8 5±1
MCSS-RSSW 0.8591±26.0 0.9240±15.0 3.0936±535.8 39.1±18.0 8±1
MPSOS-PSSW 0.8996±18.5 0.9471±10.2 2.4020±536.7 49.4±24.8 8 ±3
MCSS-PSSW 0.9002 ±17.5 0.9474±9.7 2.3311±455.2 24.0±12.0 5±1
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Table 2.14: Medical images: Comparison of the traditional technique, MPSOS-RSSW, MCSS-RSSW,
MPSOS-PSSW and MCSS-PSSW versus an handwork of brain tumor delineation expert by using av-
erage values of Jaccard coefficient, Dice coefficient, Hausdorff distance, Computation time and iterations.
The expert is the neurosurgeon of the University Hospital, Department of Neurosurgery, University of
Leipzig (Germany)

Strategy
J D dH Time (s) Iterations

(AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD×10−3) (AVG±SD) (AVG±SD)

Traditional 0.8005±85.3 0.8867±54.3 3.6193±857.3 152.5±83.1 74±71
MPSOS-RSSW 0.8514±72.0 0.9181±43.5 3.2101±889.2 264.7±151.1 5±1
MCSS-RSSW 0.8556±68.3 0.9207±41.2 3.2025±883.0 297.9±167.7 9±1
MPSOS-PSSW 0.9067±398.7 0.9506±22.4 2.5972±584.2 367.1±208.1 7±2
MCSS-PSSW 0.9158±38.8 0.9594±21.8 2.5792±592.8 183.2±107.5 4±1

Figure 2.20: Relative computational times versus number of control points.

gies using PSSW reached the closest contour to tumor objects (cf. Figure 2.21). This ob-
servation was verified with the metric values J = 0.8999, D = 0.9472 and dH = 2.6008
given by MCSS-PSSW, and J = 0.8996, D = 0.9470 and dH = 2.6008 by MPSOS-PSSW;
which are higher than the ones obtained via MCSS-RSSW (J = 0.8470, D = 0.9158
and dH = 3.2840), MPSOS-RSSW (J = 0.8320, D = 0.9067 and dH = 3.3669) and tra-
ditional ACM (J = 0.7621, D = 0.8606 and dH = 3.6137). In addition, MCSS-PSSW
found results slightly better than MPSOS-PSSW’s ones. Therefore, it is noticed that
multi-population strategies have a remarkable behaviour for tumor images segmenta-
tion, compared to the traditional ACM method.

Finally, it is noticed the average outcomes of the experiment carried out (synthetic
and real medical images segmentation) employing MCSS enables the ACM to reach
higher performance than the use of MPSOS. And based on their computational times,
the comparison of ACM driven by metaheuristic optimization techniques studied in
this work showed that the proposed MCSS-PSSW was the fastest. Thus, the metric
values obtained are such as, in the case of RSSW, J = 0.8741, D = 0.9309, dH = 3.8578,
Time (s)= 215.075 for MPSOS versus J = 0.8820, D = 0.9357, dH = 3.7211, Time
(s)= 283.3848 for MCSS. And, in the case of PSSW, J = 0.9192, D = 0.9576, dH =
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Figure 2.21: Example of brain tumor images with irregular shapes. Columns are organised for each
tumor image as: initial contour, and contours obtained using the traditional technique, MPSOS-RSSW,
MCSS-RSSW, MPSOS-PSSW and MCSS-PSSW techniques.

3.3371, Time (s)= 171.318 for MPSOS versus J = 0.9211, D = 0.9592, dH = 3.3168 and
Time (s)= 147.4934 for MCSS. Also, in this work, it is found that PSSW configuration
consumed about 1.5 times less computational time than RSSW.
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2.7.8 Conclusions

In this work, a Multi-population Cuckoo Search Strategy (MCSS) has been introduced
to solve the snake energy minimisation problem for image segmentation. MCSS was
successfully implemented and tested on medical images. Several human brain tumour
tomographies were analysed. MCSS is an alternative approach of the traditional active
contour model, which is usually solved by the gradient descent method as described
earlier. The proposed method is a two stages algorithm. Here, two different search
windows geometries were explored, the rectangular shaped search windows (RSSW)
and the pizza-slice shaped search windows (PSSW). By using the MCSS in these kind
of search windows, the new active contour model overcomes the traditional snake
drawbacks, i.e., the stagnation tendency in a local minimum and the difficulty to con-
verge in non-convex shaped objects. Nevertheless, MCSS is computationally more
expensive than the traditional technique, although MCSS requires less number of it-
erations. The experimental results showed that the ACM driven by MCSS is robust
and more efficient than the original version. In addition, the ACM guided by Multi-
population Particle Swarm Optimisation Strategy (MPSOS) was implemented (with
RSSW and PSSW) for comparison purposes. The results revealed that the proposed
approach outperforms the comparative ACM driven by MPSOS. Besides, it has a bet-
ter accuracy and requires shorter computational times. Furthermore, an additional set
of experiments was performed using brain tumour images with irregular shapes, usu-
ally associated to malignant tumours. It was noticed that the proposed method (MCSS)
represents a powerful alternative for the tumour images segmentation process, consid-
ering almost any kind of tumour shape. It was also demonstrated, according to some
metric values, that MCSS has achieved similar results with RSSW and PSSW. However,
the best performance was reached with PSSW.
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Chapter 3

Brain tumor segmentation in
intraoperative US data

3.1 Introduction

In this chapter, a brain tumor segmentation method in ultrasound data, based on the
registration with MR models is presented. The aim is to improve the tumor visualiza-
tion and to provide its geometrical parameters. The tumor segmentation in iUS images
is a difficult task and still under improvement because of the low signal noise ratio. The
success of automatic methods in ultrasound data is limited because of their noise sen-
sibility. Hence, an alternative approach based on registration techniques is proposed to
address this problem. Rigid and affine transformation were tested for the registration
of iUS and MR Patient-specific model by using image gradient values. The method
was successfully validated on a dataset of 33 patients (19 metastases and 14 glioblas-
toma) by comparing the tumor segmentation provided by the algorithm with manual
delineations using the specificity, sensitivity, precision and Dice index. Limited com-
putation time and interaction make the tool relevant for intraoperative use.

3.2 Related works

Ultrasound modality has become one of the most popular imaging technique in
medicine. While offering the benefits of being a low cost, non-invasive and real-time
imaging system, the US finds various clinical applications including diagnosis, image-
guided interventions and therapy [47]. Hence, numerous studies were focused on
ultrasound image segmentation, namely, for breast tumor extraction [48, 49, 50], de-
lineating lateral ventricles of preterm neonates [51], prostate segmentation [52, 53, 54],
renal delineation [55, 56, 57], blood vessels delineation in intravascular ultrasound im-
ages [58, 59], fetus segmentation [60, 61] and vertebrae extraction [62, 63].

In neurosurgery, intraoperative ultrasound imaging is used for brain tumor surgery
to investigate the tumor state over time during the operation. Two-dimensional US
images are commonly acquired and visualized on the monitor of the US device which
offers a limited view of 3D objects. More sophisticated systems combine the US device
within a navigation system and enable obtaining 3D US data [64, 65]. The examination
of the brain tumor would be improved with its extraction from the 3D US image data.
Hence, intraoperative brain tumor segmentation should improve the lesions visual-
ization with respect to the surgeon for supporting the differentiation between tumor
mass and other structures [66]. Furthermore, 3D visualization techniques enable to
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show only anatomy of objects of interest, and geometrical parameters like tumor vol-
ume and distance to the brain surface or risk structures can be calculated. In fact,
manual delineation is robust again noise. However, it is time consuming and cannot
be performed in the operating room by the medical staff because of sterility constrains.
On the other hand, automatic segmentation is complex in US data because of the low
signal to noise ratio, artifacts, speckles, shadow, low contrast and the unclear definition
of object boundaries [48, 49, 67].

Image registration is an important technique allowing to align two images. It con-
sists by applying a proper spatial transformation to the moving image, so as to max-
imize the similarity measure between the moving and fixed images [68] [69]. It finds
numerous applications in medicine including, ultrasoundâĂŞ-MRI brain registration
[70] [71], Dynamic Contrast-Enhanced MRI (DCE-MRI) recording of moving kidney
[68] [72], registering of colon surfaces extracted from prone and supine images [73],
and prostate registration (in MRI-CT [74] and in MRI-transrectal US [75]). Several
similarity measures were used in clinical setting in recent years. For instance, Lin-
ear Correlation of Linear Combination (LC2) were introduced by Fuerst et al. [70] to
align US slices or US volumes with MRI images. In [76], Rivaz et al. proposed to treat
images as bag of words for registering MRI-US data by using the Contextual Condi-
tioned Mutual Information (CoCoMI). Furthermore, Normalized Gradient Field (NGF)
was suggested by Xu et al. [77] for the registration of real-time and prior MRI data in
image-guided cardiac interventions. In the same fashion, NGF was used for nonlinear
motion correction of DCE-MRI kidney time series [68].

3.3 Proposed method: patient specific model based segmenta-

tion of brain tumors in 3D-iUS

3.3.1 Patient image dataset

A total of 33 patients with different kind of tumors, 19 metastases and 14 glioblastoma
cases, were included in this work. This patient data has been collected at the De-
partment of Neurosurgery at the University Hospital of Leipzig, Germany in the con-
text of a previous research project funded by the German Research Society (Deutsche
Forschungsgemeinschaft) and accepted by the ethics commission of the University of
Leipzig.

3.3.2 Preprocessing

The image filtering and histogram stretching were performed in this stage to enhance
the image quality before the suggested method itself. Median filters of 3× 3××3 were
used to reduce noise in the 3D-MR and 3D-iUS volumes while the histogram stretching
was used to have the same contrast in the two image modalities. Let I be a given
image with Min and Max its minimum and maximum intensity values. Histogram
stretching consists in transforming a grayscale image I to a new one IN such that
I : {Min, . . . ,Max} → IN : {Minnew, . . . ,Maxnew}. The image IN was calculated as

IN = (I −Min)
Maxnew −Minnew

Max−Min
+Minnew (3.1)

Technically, minimum and maximum intensity values from MR and US volumes,
MinMR, MaxMR, MinUS and MaxUS were extracted. Then, the Minnew and Maxnew
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were computed as
Minnew = min(MinMR,MinUS) (3.2)

Maxnew = max(MaxMR,MaxUS) (3.3)

3.3.3 Automatic segmentation method

The idea of the approach is to guide the iUS tumor segmentation process by using a MR
patient specific model. This tumor model is obtained by semi-automatic segmentation
of brain tumor in the preoperative MRI, available almost one day before the operation.
If they are simply overlapped, the model is shifted relatively to the tumor in the 3D-
iUS because of the brain tissue deformation. Therefore, the model has to be registered
with the 3D-iUS data (Figure 3.1).

Local approach

The proposed system is described in Figure 3.2. It can be observed that, a region of
interest is automatically defined based on the MR model and applied on the iUS vol-
ume. The aim of this local approach is to process only the MR and iUS sub-volumes
containing expected features so as to minimize noises. By this way, the computation
time is also optimized. The ROI size is such that it encloses not only the model, but
it includes also a neighborhood of elven voxels in each direction in order to take into
account the brain shift.

Extraction of hyperechogenic structures

Before the image registration itself, highlighted structures contained in the ROI, mainly
tumor, are extracted by using the Otsu multilevel thresholding technique [?][33] in
both modalities (MRI and iUS). The threshold levels in the Otsu method are settled to
two. Therefore, based on their intensity values, voxels of MRI and iUS volumes are
classified in three classes: background, brain tissues and hyperechogenic structures.
Tissue classified in the high-level intensity class (third one) are kept for the registration.

Automatic registration

The proposed registration approach is conducted on extracted binary structures. Most
of similarity measures are based on comparison of statistical intensity information.
However, by registering binary structures, the NGF are selected here because it al-
lows to align objects using a distance measure based on computed angles. Thus, the
transformations are carried out based on gradient values used as key features in the
registration process. Applied on binary volumes, the gradients computed inside the
volume are zero. Only the edges contribute in the gradient calculation. In order to
evaluate the performance of the proposed method, rigid and affine transformations
are tested. Finally, the obtained transformation matrix T is applied on the MR model
to align it to the tumor in the 3D-iUS. Consequently, the aligned patient specific model
enables to improve the visualization of the tumor in iUS by highlighting the tumor
borders.
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The rigid and affine transformations have six and twelve degree of freedom, re-
spectively. They are described by the following equation

TRigid = Ttrans(t1, t2, t3)Trot(θ1, θ2, θ3) (3.4)

TAffine = Ttrans(t1, t2, t3)Tscale(α1, α2, α3)Trot(θ1, θ2, θ3)Tshear(β1, β2, β3) (3.5)

where TRigid and TAffine are rigid and affine transformations. Moreover, Ttrans, Tscale,
Trot and Tshear are matrices of translation, scaling, rotation and shearing, respectively.
The parameters t, α, θ and β represent the degree of freedom in the transformation.
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Figure 3.1: Concept of patient specific MR model based tumor segmentation in iUS.
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Figure 3.2: Automatic tumor segmentation approach in iUS.

Normalized gradient field

The Normalized Gradient Fields, proposed by Haber and Modersitzki [78] [79], is de-
fined by the following distance measure

D(Im, If ) = −1

2

∫

Ω
< n̂(Im, x), n̂(If , x) >

2 dx (3.6)

where Im and If are the moving and fixed images, respectively. The normalized gra-
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dient n̂ of the image I is computed as

n̂(I, x) :=

{

∇I(x)
||∇I(x)||ǫ ∇I(x) 6= 0;

0 otherwise.
(3.7)

where ||∇I(x)||ǫ =
√

∇I(x)T∇I(x) + ǫ2 and ǫ is a soft thresholding that minimizes the
effects of small gradients due to noise.

So, the registration process will consists in finding the transformation T : R3 → R
3

that minimizes the distance D as: argmin
T

{D(Im[T ], If )} (see [77]).

3.4 Experimental results and disccusion

This section provides the experimental results of the evaluation of the proposed iUS
segmentation method. The implementation was performed using the Mevislab plat-
form. Thirty-three patients, 19 with metastasis and 14 with glioblastoma, were in-
cluded in this work. Four metrics were used for the quantitative assessment of the
results, namely, the specificity (Spe), sensitivity (Sen), precision (Pre) and Dice coeffi-
cient (D).

3.4.1 Method accuracy evaluation

Figure 3.3 illustrates how the MR model does not match with the tumor in iUS before
registration and how they become aligned after registration by using the proposed
framework. The 2D and 3D images depict the position of the MR tumor model before
and after registration.

Before registration After registration

Figure 3.3: Patient 3 (Glioblastoma cases). Position of the tumor model before and after registration.
The ground truth is depicted in yellow and the tumor model in red.
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Figure 3.4 presents the segmentation results obtained for eight patients with metas-
tasis. The algorithm outcomes (in red) and the ground truths (in yellow) are overlaid
on a selected slice of the 3D-iUS images for visualization purposes. It can be observed
that the segmentation results follow the manual delineations. Table 3.1 summarizes
the outcomes achieved by using the proposed segmentation approach with the rigid
and affine transformation.

01 02 03 06

08 11 12 13

Figure 3.4: Automatic segmentation of brain tumor metastasis in eight 3D-iUS patient data. The
ground truth is depicted in yellow and the obtained result in red.

08060502

10 11 1413

Figure 3.5: Segmentation results of brain tumor glioblastomas in eight 3D-iUS patient data. The
ground truth is depicted in yellow and the obtained result in red.
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Table 3.1: Metric values achieved for patients with metastasis. The accuracy rates before the registra-
tion (initial) are compared to those of results obtained by using the proposed local binary registration
approach. Rigid and affine transformations are tested.

Initial Rigid Affine
Patient Spe Sen Pre D Spe Sen Pre D Spe Sen Pre D

1 0.9997 0.5367 0.5280 0.5323 0.9999 0.8461 0.8324 0.8392 0.9998 0.8592 0.7970 0.8270
2 0.9996 0.8000 0.7582 0.7788 0.9997 0.9039 0.8560 0.8793 0.9998 0.9133 0.8704 0.8913
3 0.9998 0.6649 0.7957 0.7244 0.9998 0.6646 0.7980 0.7252 0.9999 0.7734 0.9272 0.8434
4 0.9980 0.8150 0.6085 0.6988 0.9986 0.9794 0.7314 0.8374 0.9988 0.9641 0.7630 0.8519
5 0.9996 0.2972 0.4235 0.3493 0.9999 0.6226 0.8885 0.7321 0.9998 0.5226 0.7483 0.6154
6 0.9996 0.6822 0.7773 0.7267 0.9998 0.8883 0.8811 0.8847 0.9997 0.8642 0.8654 0.8648
7 0.9986 0.8556 0.6089 0.7115 0.9986 0.9008 0.6308 0.7420 0.9988 0.9597 0.6824 0.7976
8 0.9993 0.8440 0.6153 0.7118 0.9995 0.9279 0.7157 0.8081 0.9995 0.9260 0.7143 0.8065
9 0.9998 0.5251 0.5641 0.5439 0.9999 0.6759 0.7261 0.7001 0.9999 0.7300 0.7842 0.7561
10 0.9998 0.6589 0.5923 0.6239 0.9998 0.7126 0.5937 0.6478 0.9998 0.8872 0.7195 0.7946
11 0.9993 0.5273 0.5848 0.5546 0.9996 0.7144 0.7920 0.7512 0.9999 0.8492 0.9626 0.9023
12 0.9997 0.7036 0.7880 0.7434 0.9998 0.8255 0.9245 0.8722 0.9998 0.8019 0.8982 0.8473
13 0.9994 0.6213 0.6735 0.6464 0.9997 0.8075 0.8713 0.8382 0.9996 0.7396 0.7978 0.7676
14 0.9967 0.8291 0.7051 0.7621 0.9975 0.9279 0.7803 0.8477 0.9974 0.9350 0.7749 0.8475
15 0.9968 0.8715 0.7649 0.8147 0.9975 0.9339 0.8152 0.8705 0.9972 0.9329 0.7958 0.8589
16 0.9992 0.9030 0.7830 0.8387 0.9993 0.9382 0.8135 0.8715 0.9994 0.9279 0.8286 0.8754
17 0.9988 0.5143 0.4924 0.5031 0.9995 0.8400 0.8045 0.8219 0.9994 0.8067 0.7773 0.7917
18 0.9972 0.8414 0.6764 0.7500 0.9973 0.8437 0.6869 0.7573 0.9973 0.8414 0.6855 0.7555
19 0.9987 0.9504 0.7571 0.8428 0.9989 0.9832 0.7811 0.8706 0.9988 0.9743 0.7758 0.8638
Average 0.9989 0.7074 0.6577 0.6766 0.9992 0.8388 0.7854 0.8051 0.9992 0.8531 0.7983 0.8189

Table 3.2: Metric values achieved for patients with glioblastoma. The accuracy rates before the regis-
tration (initial) are compared to those of results obtained by using the proposed local binary registration
approach. Rigid and affine transformations are tested.

Initial Rigid Affine
Patient Spe Sen Pre D Spe Sen Pre D Spe Sen Pre D

1 0.9990 0.5512 0.6655 0.6030 0.9991 0.6689 0.7332 0.6996 0.9993 0.7078 0.7735 0.7392
2 0.9982 0.3586 0.4265 0.3896 0.9983 0.5496 0.5496 0.5451 0.9991 0.7546 0.7714 0.7629
3 0.9995 0.3702 0.2895 0.3249 0.9997 0.8693 0.6798 0.7630 0.9997 0.8619 0.6689 0.7532
4 0.9989 0.6032 0.6360 0.6192 0.9990 0.6126 0.6510 0.6312 0.9993 0.7311 0.7582 0.7444
5 0.9995 0.9286 0.8025 0.8610 0.9995 0.9275 0.7822 0.8487 0.9995 0.9162 0.7766 0.8406
6 0.9976 0.6787 0.6420 0.6598 0.9981 0.7782 0.7198 0.7479 0.9980 0.7913 0.7100 0.7485
7 0.9969 0.4512 0.5461 0.4941 0.9988 0.6773 0.8253 0.7440 0.9958 0.2697 0.3424 0.3018
8 0.9987 0.6215 0.6636 0.6418 0.9997 0.8714 0.9291 0.8993 0.9996 0.8413 0.9093 0.8740
9 0.9975 0.8527 0.6792 0.7561 0.9976 0.8576 0.6848 0.7615 0.9979 0.8750 0.7208 0.7904
10 0.9994 0.5334 0.7683 0.6297 0.9994 0.8731 0.8575 0.8652 0.9995 0.8570 0.8851 0.8708
11 0.9997 0.8611 0.7923 0.8253 0.9997 0.8545 0.7859 0.8188 0.9996 0.8101 0.7454 0.7764
12 0.9980 0.8668 0.6666 0.7536 0.9980 0.8809 0.6619 0.7559 0.9980 0.8986 0.6723 0.7692
13 0.9978 0.7841 0.6892 0.7336 0.9985 0.8891 0.7928 0.8382 0.9987 0.8981 0.8199 0.8572
14 0.9990 0.8671 0.6771 0.7604 0.9991 0.9105 0.7207 0.8045 0.9992 0.9223 0.7294 0.8146
Average 0.9985 0.6663 0.6388 0.6465 0.9988 0.8014 0.7409 0.7659 0.9988 0.7953 0.7345 0.7602
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Figure 3.5 shows the segmentation results reached in the case of eight patients
with glioblastoma. The outcomes reached by the proposed algorithm (in red) and the
ground truths (in yellow) are superimposed for illustration. It is difficult to draw the
limits of this kind of tumors. However, the outcomes reveal that the tumor boundaries
can be outlined in a promising manner, and the discrimination between healthy and
tumorous regions is enhanced. Table 3.2 presents the outcomes obtained by using the
suggested segmentation approach with the rigid and affine transformation.

Experiments showed that the proposed method is effective for segmenting tumor
in 3D-iUS by using the patient specific model. In general, the quantitative evaluation
supports the visual observation. Also, it reveals how the final results are improved
compared to the initial tumor position. The mean rate values from initial contours are
Spe = 0.9989, Sen = 0.7074, Pre = 0.6577, D = 0.6766 for metastasis and Spe =
0.9985, Sen = 0.6663, Pre = 0.6388, D = 0.6465 for glioblastoma. It was found that
there is no significant difference between the outputs reached through the two types
of transformations. For metastasis cases, mean values of Spe = 0.9992, Sen = 0.8388,
Pre = 0.7854, D = 0.8051 and Spe = 0.9992, Sen = 0.8531, Pre = 0.7983, D =
0.8189 were obtained for the rigid and the affine transformations, respectively. In the
same fashion, the average rates of Spe = 0.9988, Sen = 0.8014, Pre = 0.7409, D =
0.7659 and Spe = 0.9988, Sen = 0.7953, Pre = 0.7345, D = 0.7602 were achieved for
glioblastoma by testing the two mentioned transformations, respectively. These results
show that our approach is able to correctly delineate tumorous tissues in 3D-iUS. The
achieved values in the metastasis segmentation are higher than those obtained in the
glioblastoma delineation can be explained by the difference in the representation of
these two kinds of tumors in B-mode ultrasound. Metastases are encapsulated tumors
whose boundary is well depicted. In case of image artifacts, the model enables to
supplement the missing boundary information. Whereas, glioblastomas are diffused
tumors whose margins can look blurred in B-mode US. Thus, the contour delineation
of this types of tumors is difficult.

The automatically segmented tumor matches more accurately the manually delin-
eated tumor for metastasis than for glioblastomas. Metastasis boundary is generally
sharply represented in B-mode US imaging. This explains the great success of the
method. On the other hand, glioblastoma boundary looks blurred in B-mode US. The
manual delineation itself is in this case a complex task and represents a limitation in
terms of accuracy in the validation method. The task was supported by the use of
preoperative MR data.

The main advantage of the tumor model is the ability to locally supplement missing
boundary information mostly due to image artifacts. Based on automatic thresholding
technique, the relevance of the method is dependent of image quality. For example,
in the case of glioblastomas, the missing highlighted borders can lead to the method
failure. One of the strong point of the suggested method is that binary elements used
for registration included not only tumor tissues, but also surrounding hyperechogenic
structures like blood vessels and cerebral falx. Thus, it is important to note that the size
of the ROI plays a major role in the registration process. A big ROI is preferable for
taking into account large deformation and several surrounding hyperechogenic struc-
tures. But, according to the tumor position, it could lead to the extraction of many
noises and the failure of the method. In the contrast, a small ROI is concentrated to tu-
morous tissues and can lead to the failure of the method in case of lack of information.
The ROI defined by adding eleven voxels in each direction was experimentally found
as a good trade-off between these two constraints.
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3.4.2 Computation time assessment

The experiments were conducted in a personal computer with the following specifi-
cations: CPU Intel R© PentiumTM 1.9 GHz, 4 GB of RAM, Microsoft R© WindowsTM 10
and 64-bit operating system. The proposed registration methodology used for tumor
segmentation is referred here as local binary approach or simply local approach. Reg-
istration of entire 3D-MR and 3D-iUS volumes were also used to evaluate the overlap
of tumors from these two modalities. And, it is presented as traditional approach. The
computation time necessary to obtain segmentation outcomes by employing the local
binary and traditional approach were calculated. It was found that, for rigid transfor-
mation, an average time of 1.925 and 639.75 seconds were respectively spent by using
the first and the second approach. And, for affine transformation, a mean time value
of 7.25 seconds was spent employing the local binary approach versus 2878.75 seconds
using the traditional approach. These results reveal clearly two points. First, the rigid
transformation is performed in a lower time than the affine transformation. This ob-
servation is sustained by the fact that, twelve degrees of freedom are allowed in affine
transformation while there is only six for rigid transformation. Second, the proposed
local binary approach consumes lesser time versus the traditional approach. The time
required to obtain results, in the traditional approach, depends on the total size of the
volume. However, in the local binary approach, it depends only on the size of the
specific model of the MR patient.

3.4.3 Proposed method versus traditional approach

Additional experiments were carried out in order to compare the segmentation per-
formances reached through the proposed method and the traditional approach. This
comparison was performed in term of Dice indexes. Figures 3.6 and 3.7 present the re-
sults, which report the comparison between the proposed method and the traditional
approach, obtained from patients with metastasis and glioblastoma, respectively.
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Figure 3.6: Dice indexes comparison between the proposed method and the traditional approach. Rigid
and affine transformations were tested on the dataset of patients with metastases.

It can be clearly observed that the local method achieves higher Dice coefficients
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than the traditional approach for any transformation type and for each kind of tumor.
In the case of patients with metastasis and for rigid transformation, the mean Dice
coefficient of 0.8051 was obtained by using the suggested approach versus 0.6551 em-
ploying the comparative method. And, regarding affine transformation, the average
Dice values of 0.8188 versus 0.4565 were obtained by using the local binary approach
and the comparative method, respectively. In the case of patients with glioblastoma
and for rigid transformation, the average Dice coefficient of 0.7659 was reached via the
proposed method versus 0.5691 achieved by the traditional approach. And, concern-
ing affine transformation, the mean Dice indexes of 0.7602 versus 0.5945 were obtained
via the suggested and the comparative method, respectively.
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Figure 3.7: Comparison of Dice rates from the proposed method and the traditional approach. Rigid and
affine transformations were tested on the dataset of patients with glioblastoma.

3.5 Conclusion

In this chapter, a local method for brain tumor segmentation in 3D-iUS data based
on the patient specific MR model was presented. The method has consisted in reg-
istering the MR tumor model available almost one day before the operation with the
tumor in iUS. To achieve this goal, first, a region of interest enclosing the model was
automatically defined. Eleven voxels were added in each direction to find a ROI tak-
ing into account the brain shift deformation in iUS. Thus, the ROI size was enough
large to include the tumor location in iUS. Second, the hyperechogenic structures con-
tained in the ROI and from both modalities (MRI and iUS) were extracted by using the
Otsu segmentation method. Third, these binary structures were registered based on
gradient values used as key features in the registration task. By using the NGF simi-
larity measure, the rigid and affine transformations were used for testing the method.
The experiment results showed that the proposed approach was able to correctly seg-
ment the brain tumor in iUS. In the case of metastases, average Dice values of 0.8051
and 0.8189 were reached by employing the rigid and affine transformations, respec-
tively. For patients with glioblastoma, average Dice values of 0.7659 and 0.7602 were
reached by using the rigid and affine transformations, respectively. These achieved
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rates demonstrate how the initial Dice values 0.6766 and 0.6465 are increased using the
proposed method.
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Chapter 4

Automatic Identification of Residual
Brain Tumors

4.1 Introduction

In the context of brain tumor surgery, residual tumors are still a problem for neurosur-
geons. Due to the invasiveness of the treatment and the fact that tumor remnant cells
are potential sources of new tumor growth; the removal of the maximum quantity of
these abnormal cells is important to save lives. Thus, after initial resection, the real-
time tissue analysis is fundamental for supporting the physician decision about the
presence or absence of residual tumor cells. We propose an image processing approach
that can provide additional information for helping to improve medical decision. In
fact, tumor tissues and vessels are highlighted in CEUS while the resection cavity is
depicted well in B-mode US. By combining this relevant information, the brain struc-
tures could be discriminated and classified as residual tumor. Besides during surgery,
the mental representation of the information obtained from these two modalities is
difficult for neurosurgeons, and the proposed image fusion technique might be an ad-
equate alternative. The method was tested on an image dataset of 23 patients suffering
from glioblastoma. The detection rate of brain areas with tumor residuals reached by
the algorithm was qualitatively and quantitatively compared with manual annotations
provided by experts. The results showed that the assistance tool was able to success-
fully identify areas with suspicious tissue.

4.2 Theory

In neurosurgery, intraoperative ultrasound (iUS) imaging provides the benefit of real
time visualization of the brain anatomical structures. Ultrasound devices have the ad-
vantage of being easy to use in the operating room. Hence, extra image acquisitions
may modify the surgical workflow a little. Additionally, they are relatively low costs
in comparison to other medical imaging systems. This intraoperative modality is rou-
tinely used to guide brain tumor operations. Particularly, iUS aims at identifying the
presence of possible tumor residuals at the end of the operation, in order to remove
as much tumor tissue as possible [80, 81]. This is a crucial aspect since several stud-
ies showed that a gross-total resection has a positive impact on the progression-free
survival of patients.

Intraoperative B-mode ultrasound (iB-mode) remains the most popular modality
used to support brain tumor surgery but is not always suitable. Hence, specific brain
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tumors (e.g. the glial tumors) are often represented by a weak contrast and the ex-
act position of tumor boundaries is hard to define. Furthermore, the tumor residu-
als, which are located beyond the borders of the resection cavity, are hardly differen-
tiable from blood and artifacts. The use of an ultrasound contrast agent to enhance
brain tumor tissue and residual tumor is currently being developed. The technique is
not new; contrast enhanced ultrasound (CEUS) imaging is routinely performed and
it was already tested in other medical areas like breast tumor diagnosis [82, 83], liver
lesions [84, 85], renal masses [86, 87, 88] or blood vessels identification [89, 90, 91]. Ad-
ditionally, improvements of brain tumor tissues and tumor residuals enhancement by
using CEUS was effectively demonstrated by several recent studies [92, 93, 94, 95, 96].

However, the identification of tumor residuals in the iUS data remains in general
complex for the expert-eye. Depending on the position of the tumor within the patien-
tâĂŹs head, the resection cavity as well as other cerebral structures like blood vessels;
potentially ventricles and bone structures are usually well depicted in the iB-mode im-
age data. But the possible tumor residuals are hardly differentiable from other hypere-
chogenic structures, like the border of the resection cavity, blood or artifacts (Figure 4.1
left). Furthermore, only the blood vessels and vascularized structures, like tumors, are
attempted to be enhanced in the iCEUS image data. Also, the borders of the resection
cavity, which are important structures that are needed to analyze the images correctly,
are hardly or not visible (Figure 4.1 right). Combination of the information in the iB-
mode and iCEUS image data, also called data fusion, can support the identification of
tumor residuals.

B-mode CEUS

Blood

Resection cavity

Tumor 

residuals

Figure 4.1: Intraoperative B-mode ultrasound (iB-mode) (left) and iCEUS (contrast enhanced ultra-
sound (CEUS)) (right) patient image data acquired at the end of a brain tumor operation.

Image fusion consists of combining relevant information from various source im-
ages of the same scene into a single resulting image called the “fused image”. The
aim of fusion is to preserve specific details of the source images within the fused im-
age to obtain a better representation and understanding of the scene. In theory, three
levels of image fusion can be distinguished: the pixel level, the feature level and the
decision level [97, 98]. The initial level is known as the lowest level because it di-
rectly involves the pixels of the source images. The second level utilizes features or
objects extracted from source images. The highest level involves decision rules. This
technique is largely used in many applications like remote sensing [99, 100], computer
vision [101, 102] and medical imaging [103, 104]. In the medical field, image fusion
is mainly applied to provide a high quality in patient data representation by using
images from different modalities. The objectives of image fusion are mainly the im-
provement of the image’s contrast and rectification of image degradation. Image fu-
sion is performed using various fundamental methods. Das et al. [105] combined a
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non-subsampled contourlet transform (NSCT) with a reduced pulse-coupled neural
network and fuzzy logic technique to overcome the image fusion problems such as
contrast reduction and image degradations. Zhu et al. employed a dictionary learning
approach [106]. Due to the limited and redundant information in image patches cre-
ated by using traditional dictionary learning methods, an alternative scheme of image
patch sampling and clustering was proposed. Then, the K-SVD algorithm was used for
training of patch groups into compact sub-dictionaries, which were then combined into
a complete dictionary. Furthermore, a multimodal (CT/MRI) image fusion method
based on NSCT was introduced by Bhatnagar et al. [107]. The resultant low and high-
frequency coefficients were respectively combined through the phase congruency and
directive contrast-based models. Then, the inverse NSCT was applied on composite
coefficients to recover the fused image. Since nature-inspired techniques became pop-
ular in computer vision, they have been applied extensively in medical image fusion.
Xu et al. [108] have fused multimodal medical images by means of adaptive pulse-
coupled neural networks (PCNN). They proposed automatic and optimum parame-
ters tuning of the PCNN model by using the quantum-behaved particle swarm opti-
mization algorithm. In the same fashion, the swarm intelligence of the ant colony and
neural network was used for fusing images from PET, MRI, SPECT and MRI modal-
ities [109]. The loss of edges and directional information often occurs during feeding
of neural network inputs. Therefore, to solve this problem, the ant colony optimiza-
tion and statistical scaling techniques were respectively used to detect and enhance the
image’s edges before the neural network training and testing. Above all, the image fu-
sion has demonstrated its effectiveness for planning and intraoperative interventions,
especially in neurosurgery. Fusion techniques allow, in this context, augmenting the
visualization of anatomical structures that are depicted only in one imaging modal-
ity or to monitor in time the evolution of a disease. For instance, the CT-MR fusion
images were used by Nemec et al. [110] for supporting the surgeon to improve the sur-
gical performance of temporal bone tumors. Furthermore, Prada et al. [111] presented
the fusion imaging between preoperative MRI and iUS for intra-operative ultrasound-
based navigation in the context of brain tumor removal. The combination of the MRI,
characterized by good spatial resolution and a wide field of view, and the iUS that
provides real-time status of the brain enables improvement of surgical outcomes. By
the same token, an interesting review concerning image fusion for precise target detec-
tion in radiosurgery, neurosurgery and hypofractionated radiotherapy was presented
in [112]. It is pointed out that the mixture of images such as MR and CT is useful to
avoid the damage to the nerves and blood vessels, to accurately locate tumors and to
follow-up on the postoperative treatment.

4.3 Main contributions

In this technical paper, we are concerned with the development of an image-processing
approach to aid the surgeon with the identification of brain areas including residual
brain tumor based on both 3D iB-mode and 3D-iCEUS imaging. Our approach re-
traces the neurosurgeon’s process for interpreting the iUS image data. It is based on
two assumptions. The tumor residuals are located beyond the resection cavity wall (for
patients who overcame a gross total resection). Additionally, the tumor residuals are
enhanced in the iUS image data. However, they are hardly distinguishable from blood,
cavity borders and artifacts in the iB-mode image data. Therefore, the method consists
of extracting relevant information from both iB-mode and CEUS modalities using auto-
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matic segmentation techniques and of fusing them according to rules to keep the tumor
residuals. This procedure corresponds to the second and third level fusion methods. In
the proposed methodology, the suspect tissues are overlaid on the original 3D B-mode
US to facilitate clinical interpretation. In this way, the physician decision regarding the
tumor removal task can be optimized. To the best of available knowledge, this is the
first time that a computer-assisted approach has been proposed to aid neurosurgeons
in the detection of residual tumor cells based on iUS imaging. However, it is important
to note that this work was tested “offline” on a limited database of patient images.

4.4 Proposed method: Image Fusion for Residual Brain Tumor

Identification

4.4.1 Patient Image Dataset

Twenty three patients with glioblastoma WHO Grade IV, who overcame a gross total
or subtotal resection, were included in this “offline” analysis based on intraoperative
ultrasound images. Glioblastomas are tumors that infiltrate the brain tissues, and their
borders with healthy tissues are unclear. Therefore, the removal of the whole tumor is a
complex task for the surgeon. Possible tumor residuals in the 3D i-Bmode and iCEUS
data were manually segmented by four experts (neurosurgeons and scientists), who
have had experience with intraoperative ultrasound imaging of brain tumors. The task
was performed using radiological findings and postoperative MR image data. For four
patients, no tumor was visible in the iUS and MR image data. Radiological findings
are medical reports provided by radiologists in which possible operation complica-
tions (for example blooding) and the presence of possible remnants of tumor tissue are
described. These reports are routinely achieved based on postoperative MR data.

4.4.2 Image Fusion for Residual Brain Tumor Identification

The approach to automatically identify tumor residuals based on iUS image data is
depicted in (Figure 4.2). It consists of automatically segmenting target structures in the
image data and then of optimally fusing them to keep only those that provide relevant
information. The target structures, i.e., the residual tumors, are highlighted in both
B-mode and CEUS modalities. Therefore, gray-level intensities were chosen as the
feature for extracting tumor tissue.
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Figure 4.2: Image processing approach for brain tumor residual identification. The method is subdivided
into four main steps. First, an image preprocessing is performed for removing the ultrasound image
border by using erosion filters. Second, highlighted structures are extracted in both imaging modalities
by applying the Otsu multi-level thresholding method. Third, segmented structures are combined via
a fused rule defined by Equation (4.1). Finally, a post-processing stage is performed to remove small
structures detected that are in general false positives.
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A preprocessing stage was previously carried out by extracting foreground masks
for both images (i.e., B-mode and CEUS). Given an image I(i, j, k) where the back-
ground contains voxels of value zero, the mask M is obtained as M = I(i, j, k) > 0.
Then, erosion filters (with cubic/quadratic structuring elements of 9×9×3 and 3×3×1
for B-mode and CEUS, respectively) were applied on these masks. The multiplication
of original images by the filtered masks was performed for removing artifacts located
at the image’s border and due to the contact of the ultrasound transducer with the
brain surface.

In a second step, high intensity structures in the iUS data were automatically ex-
tracted using the Otsu multilevel thresholding method [33, 113]. The Otsu method is
one of the better and stable thresholding algorithms, which can be reliably applied on
real images. Its uniformity results in bi-level thresholding allowing one to separate the
objects and background by maximizing the between class variance [114]. Multilevel
thresholding segments a level gray image into several distinct homogeneous regions
by increasing the number N of estimated thresholds (Ti). The quantity of segmented
classes is related to the number of estimated thresholds by N − 1. It should be no-
ticed that N should have a moderate value in order that multi-thresholding algorithms
could get reliable results. In the proposed implementation, N is not recommended to
go higher than five; unfortunately, thresholding algorithms cannot automatically de-
termine the number of thresholds [115], and the number of thresholds has to be fixed,
focalizing the targeted regions.

In the 3D iB-mode images the highlighted structures are mainly borders of the re-
section cavity including blood and possible tumor residuals, but also blood vessels,
bone structures and artifacts. In the 3D iCEUS images, they mainly consist of tumor
residuals and vascular structures. The number of classes for Otsu thresholding method
was experimentally set to four and three for iB-mode and iCEUS, respectively. Ad-
ditionally, the voxels classified in the highest intensity class were kept as the target
(i.e., tumor remnant). Lastly, a post-processing stage based on the opening filter (with
structuring element of 3 × 3 × 1) was applied to reduce small false positive regions
detected by the algorithm. The opening operation consists of an erosion followed by a
dilation step, such that f ◦ g = (f ⊖ g)⊕ g, where f is the image and g the structuring
function.

For identifying suspicious brain tissue, the decision level fusion is performed
based on expert knowledge. The main idea consists of selecting the structures that
are enhanced in the 3D iCEUS images and that are located in the neighborhood of the
cavity border as depicted in the 3D iB-mode images (Figure 4.3). This operation is
performed by keeping the intersection of the segmented regions in both modalities.
Let X ′ and Y ′ be the extracted structures from X and Y , respectively. With X ′ ⊂ X
and Y ′ ⊂ Y , the fused image is obtained via the decision rules described as follows:

Z(i, j, k) =

{

1, if X ′(i, j, k) ∩ Y ′(i, j, k)=1;

0, otherwise
(4.1)

where Z(i, j, k), X ′(i, j, k) and Y ′(i, j, k) represent the voxels of volume Z, X ′ and Y ′,
respectively.
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Figure 4.3: Image fusion approach for residual brain tumor identification. The border of the resection
cavity and highlighted structures are respectively extracted from B-mode and CEUS. Afterwards, they
are combined on the feature-level fusion step. Finally, the expected result is obtained by selecting only
specific structures based on the rules defined in the decision-level fusion step.

4.4.3 Validation

Qualitative Validation

The brain areas’ locations, automatically detected by the algorithm, are compared with
the manual annotations of tumor residuals (i.e., ground truth). The following code,
A/B, was used to qualitatively assess the performance of the approach. The score A
provides the degree of success of the algorithm for the detection of residual tumors.
A score of 1 indicates that all areas including tumor tissue were identified. A score of
0 means that a part of the total number of manually-annotated regions was detected.
Additionally, a score of −1 indicates the failure of the algorithm. The second score B
(−1 or 1) reveals the additional detection of false positives (FP) by the algorithm, i.e.,
healthy structures misclassified as remnant tumorous structures. The score of +1 indi-
cates the presence of FP, while the value of −1 shows the absence of FP. It is noteworthy
that in the case of patients without tumor residuals, the first score A is omitted. Hence:

1 /−1 : all tumorous regions detected;

0 /−1 : a part of tumor residuals detected;

−1/−1 : detection failure;

1 / 1 : all tumorous regions detected and extra suspect regions (FP), as well;

0 / 1 : a part of tumorous structures detected and FP, as well;

−1 / 1 : extraction only of FP;

/−1 : patient without tumor residuals and no FP detected;

/ 1 : patient without tumor residuals and FP extracted.

Quantitative Validation

Residuals of tumor extracted by the suggested algorithm were quantitatively com-
pared with manual annotations considered as ground truth. Manual segmentation
in the iUS data is a complex task due to the unclear representation of tumorous struc-
ture borders. Therefore, the method validation was done in two steps, namely the
comparison of (1) the localization of areas containing the tumor residuals and (2) voxel
classification.
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First, the tumorous structures detected by the algorithm and the manual annota-
tions were enclosed in 3D bounding boxes. The overlap coefficient (Overlap) of these
boxes was used as a similarity measure to assess the spatial localization of tumor resid-
uals as proposed by Dollar et al. [116]. Indeed, an Overlap value of 1 is reached when
one box is completely enclosed in the other one. Moreover, a value of 0 occurs when
there is no intersection between both boxes. Several boxes were used when different
disconnected regions were detected. The final Overlap index was the average of in-
dices calculated for each box. According to the application, this coefficient allows one
to evaluate detection methods through a binary output based on a threshold value
(i.e., detected or no detected). For instance, threshold values of 0.3 and 0.5 were set
for target detection in [117] and [118], respectively. Thus, here, a threshold value of 0.5
has been selected for evaluating the proposed approach. The task of tumor residuals’
detection was considered as succeed when Overlap ≥ 0.5 and failed otherwise. This
evaluation methodology, as illustrated in the 3D iUS images in Figure 4.4 for 3 patients
(1, 6 and 16), provides information about the intersection rate between the two vol-
ume boxes. The green and red bounding boxes encompass respectively the brain areas
identified by the algorithm and the ground truths. This similarity measure is described
as follows:

Overlap =
BBal ∩BBgt

min(BBal, BBgt)
(4.2)

where BBal and BBgt are the bounding boxes enclosing the brain areas detected by
the algorithm and those manually annotated (ground truth), respectively.
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Figure 4.4: 3D representation of the quantitative evaluation approach on Patients 1, 6 and 16. BBal is
the algorithm result’s bounding box, and BBgt is the ground truth’s bounding box.

Second, the additional metrics, including accuracy (Acc), area under the ROC curve
(AUC) [9] and error rate (Err) or percentage of wrong classifications [10], were calcu-
lated to evaluate the voxels classification as the tumor residual or healthy tissue by the
method. This evaluation was carried out by interactively defining a region of interest
enclosing the resection cavity where the remnant tumors can be found. Furthermore,
these metrics were computed only for the cases where the method succeeds to identify
tumor residuals based on the first quantitative metric (i.e. Overlap ≥ 0.5). These simi-
larity measures take values in the interval [0,1]. Acc and AUC values of 1, and Err of
0 value represent the best performance of the algorithm.

It is important to note that the Acc is correlated to the Err, but they were used for
easy interpretation of the final results in term of accuracy or error rates.
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4.5 Experimental Results

This section provides the evaluation results of the proposed method for automatically
identifying possible brain tumor residuals. The implementation was performed with
the Mevislab software development kit. The method was tested “offline” on the data
of 23 patients with glioblastoma where 19 patients (Set A, Patients 1 to 19) presented
tumor residuals, while no remnant tumor tissue was indicated for the remaining four
patients (Set B, Patients 20 to 23).

4.5.1 Evaluation of the Influence of the Class Number in the Segmentation
Step

The performance of the system is dependent on the setting of parameters such as the
class number (multilevel thresholding Otsu method) and the filter window sizes in the
erosion and opening operations. The influence of the class number on the segmenta-
tion results was estimated. Eight setting possibilities of class numbers were analyzed.
Additionally, the notation α–β was adopted to represent the class numbers in B-mode
and CEUS, respectively. Figure 4.5 shows the mean values of AUC and Acc calculated
on the patient set using these eight configurations. It can be clearly observed that the
highest Acc is achieved by selecting a large number of classes (e.g., 5–5). On the other
hand, the highest AUC is obtained with a low number of classes (e.g., 3–2). When α
and β increase, the system becomes more selective or less sensitive. This means that
the probability to detect highlighted structures, including tumor residuals and other
hyperechogenic structures, is reduced. On the contrary, it becomes more sensitive
when α and β decrease (large values of AUC). Here, the probability to detect these
highlighted structures is maximized. The first objective of the tool is rather the tumor
remnants’ localization and not accurate segmentation. Therefore, the optimal number
of classes should be obtained when a balance between high values of both Acc and
AUC is reached. A trade-off was obtained by setting α and β to the values of 4 and 3.
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Figure 4.5: AUC and Acc performance rates computed for several numbers of class configurations in
B-mode and CEUS.
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4.5.2 Method Evaluation

The outcomes, obtained by the automatic proposed method, are presented in Fig-
ures 4.6 to 4.8. In addition, the algorithm results (in green) and the ground truths
(in red) are overlaid on a selected slice of the 3D iB-mode images for visualization pur-
poses. Table 4.1 summarizes the qualitative and quantitative evaluation. The former
is based on expert observations, and the latter is performed by using the overlap, ac-
curacy, area under the curve and error rate measures. The experiments showed that
the proposed approach succeeded in detecting the position of all tumor remnant areas
in 15 out of 19 patients (Overlap ≥ 0.5). For these cases, a qualitative coding of 1/−1
(all tumorous regions were detected) or 1/1 (all tumorous regions were detected and
extra suspected regions, as well) was observed. Regarding the four unsuccessful cases,
the areas with tumorous tissue were partially detected in two patients (Patients 2 and
7, where Overlap < 0.5), and the algorithm failed in the two other cases (Patients 14
and 18, where Overlap = 0). One failure reason is the position of tumor residuals near
the image top (Patients 7 and 18). These areas are removed in the preprocessing steps
to eliminate artifacts caused by the US probe. The method was also tested on patient
data from the set B where false positives were detected in the cases of Patients 20 and
23 and none for Patients 21 and 22.

2

6

1

4 5

3

Figure 4.6: Results of residual tumor identification from Patients 1 to 6. The results obtained with
the proposed automatic method (in green) and in the manual segmentation (in red) are overlaid on a
selected slice of the 3D iB-mode image data. The algorithm missed tumorous structures in Patient 2 and
identified extra regions in Patient 4.

Additionally, three cases that include false positives were found (Patients 4, 14, 18).
These areas correspond to hyperechogenic structures (for example, bone and blood
on the cavity border) in both iB-mode and iCEUS image data, and they are therefore
extracted by the method. However, when the false positives are detected in areas far
away from the resection cavity (e.g., Patients 4 and 18), these outcomes do not affect
the clinical interpretation of the data because tumor residuals can be found only in the
cavity.

In general, the quantitative metric used for estimating the tumor residuals’ local-
ization sustains the expert classifications. Overlap values lower than 0.5 were obtained
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Figure 4.7: Results of residual tumor identification from Patients 7 to 12. The results obtained by using
the proposed automatic method (in green) are superimposed with the expert manual segmentation (in
red). The algorithm missed the detection of other tumorous structures in the case of Patient 7, and it
identified a large region in the case of Patient 10.
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Figure 4.8: Results of residual tumor identification from Patients 13 to 19. The results obtained by
using the proposed automatic method (in green) are overlaid with the expert manual segmentation (in
red). The algorithm missed completely the target in the case of Patients 14 and 18. In addition, it detected
an extra region in the case of Patient 15.
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Patient Qualitative Overlap Success Acc AUC Err

1 1/−1 0.5307 1 0.9879 0.8405 0.0121
2 0/−1 0.3000 0 – – –
3 1/−1 0.6875 1 0.9795 0.899 0.0205
4 1/1 0.6666 1 0.9493 0.7650 0.0507
5 1/−1 0.7551 1 0.8105 0.8442 0.1895
6 1/−1 0.6913 1 0.9777 0.8803 0.0223
7 0/−1 0.2571 0 – – –
8 1/−1 0.8888 1 0.9618 0.6296 0.0382
9 1/−1 0.8500 1 0.9699 0.6642 0.0301
10 1/−1 1.0000 1 0.8794 0.8954 0.1206
11 1/−1 0.5053 1 0.9528 0.5367 0.0472
12 1/−1 1.0000 1 0.9522 0.5269 0.0478
13 1/−1 0.7173 1 0.9697 0.6257 0.0303
14 −1/1 0 0 – – –
15 1/−1 0.7222 1 0.9347 0.6571 0.0653
16 1/−1 0.7741 1 0.9864 0.7869 0.0135
17 1/-1 0.8000 1 0.9721 0.5914 0.0279
18 −1/1 0 0 – – –
19 1/−1 0.6464 1 0.9766 0.8837 0.0234
20 /1 – – – – –
21 /−1 – – – – –
22 /−1 – – – – –
23 /1 – – – – –

Table 4.1: Overlap, accuracy (Acc), area under the curve (AUC) and error rate (Err) measures ob-
tained from the identification of residual brain tumors by using the proposed data fusion approach.
Overlap values above 0.5 indicate the successful localization of the residual tumor (success = 1), and
those under this threshold value mean failure (success = 0). Patients 1 to 19 presented tumor residuals,
while tumor tissue was completely removed during the operation for Patients 20 to 23.

when areas with tumor residuals were partly or not detected by the approach (Patients
2, 7, 14 and 18). However, the absolute value of the Overlap coefficients does not pro-
vide a quality rate about the segmentation of tumor remnants. For instance, a value of
1 was reached for Patient 10 because the boxes were included in each other, but this
case does not show the best visual result. The other metrics measure objectively the
voxel classification quality. The highest accuracy values (Acc ≥ 0.97) and lowest error
rate (Err < 0.03) were obtained for Patients 1, 3, 6, 16, 17 and 19, because the algo-
rithm detected correctly most of the true positives. Moreover, good accuracy scores
(0.93 ≤ Acc ≤ 0.96) and error rates (Err < 0.08) were reached in the cases of Patients
4, 8, 9, 11, 12, 13 and 15. Additionally, the lowest scores (Acc of 0.8105 and 0.8794, Err
of 0.1895 and 0.1206) were achieved for Patients 5 and 10. In addition, the AUC rates
show how well true positives and false positives can be properly distinguished by the
method.

The manual and quantitative validation results showed three limitations in the ap-
proach of tumor residual detection. Firstly, the current algorithm may miss residual tu-
mors. Secondly, the algorithm extracts extra regions, which were not labeled as resid-
ual tumors by the expert. Thirdly, regions including tumor remnants segmented by
the algorithm and in the ground truth have different sizes and positions. These three
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points are discussed in the next paragraphs.
The method failed at identifying the residual tumors correctly in four out of 19

patients (Patients 2, 7, 14 and 18). A first reason for failing is the image quality. The
approach was tested on 3D US volumes built based on acquired 2D images. The 3D re-
construction algorithm makes use of smoothing functions; therefore, hyperechogenic
structures appear to have lower contrasts in the 3D volumes. Moreover, the time win-
dow of maximal contrast agent enhancement in the CEUS image data is short, and the
3D acquisition requires a couple of seconds. This maximal enhancement time point
may be missed during the acquisition. This image quality drawback can be addressed
by using directly raw data (2D images). However, with the current neuronavigation
system used at the clinical University of Leipzig, we have only access to the 3D iUS re-
constructed volume and not to the original 2D iUS data. A second reason is due to the
algorithm itself. Artifacts located at the image borders are removed in the preprocess-
ing step (Section 4.4.2). In addition, through this process, tumor areas can be lost, as
well. Therefore, improvements in the pre-processing step and in the characterization
of tumor residuals in the iUS images are needed.

Figure 4.9 depicts an example where extra regions, here the falx, are identified by
the fusion method. These structures are obviously not tumorous tissue because they
are located far from the resection cavity. Moreover, the elongated and indented shape
of the extracted region is not characteristic of tumor residuals whose shape is rather
compact. However, this area was enhanced in the 3D iB-mode and iCEUS image data
and therefore extracted by the algorithm. A semi-automatic approach could be sug-
gested by interactively defining a region of interest enclosing the surrounding of the
resection cavity in order to limit the search volume of tumor residuals. Furthermore,
Figure 4.9 gives an illustration of the results reached with the automatic and semi-
automatic methods for a specific case. The first and second rows show the results
obtained by using the automatic and semi-automatic methods, respectively. The au-
tomatic method result is sufficient for the neurosurgeon, because he/she refers to his
knowledge to extract the correct information among the set that the algorithm sug-
gests. Moreover, the semi-automatic process could be automated by extracting the
hole of the cavity.

The quantitative evaluation showed that brain areas detected by the algorithm and
segmented by the experts have different positions and sizes. The algorithm extracts
essentially image regions with high intensities. On the other hand, the experts con-
sidered in addition the postoperative MR data and the radiological findings to refine
the regions including tumor tissue. The extraction of additional features (e.g., texture
and shape) could improve the tissue classification by using the automatic approach.
In conclusion, the suggested approach is capable, at this current step, to point out sus-
picious brain areas in the iUS images rather than to segment the residuals of tumors.
A better characterization of tumor tissue by using shape descriptors and additional
intraoperative ultrasound modalities, like ultrasound perfusion, should improve the
performance of automatic methods.

4.6 Conclusions

The problem of identifying the presence or the absence of residual brain tumor in iUS
image data was addressed in this work. Our hypothesis is: (1) residual tumorous tis-
sue is most of the time located beyond the borders of the resection cavity, which is well
visible in B-mode modality and (2) tumor tissue is highlighted in B-mode and CEUS
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Figure 4.9: Results of residual tumor identification from Patient 4: automatic versus semi-automatic
approaches. The automatic proposed method where the white arrows show extra regions detected by the
algorithm (Row 1). Correction of over residual tumor identification by using a semi-automatic method
based on an ROI (Row 2). The algorithm outcomes (in green) are superimposed with the expert manual
segmentation (in red).

modalities. Firstly, the approach consists of extracting relevant information from the
iUS image data. Moreover, secondly, it allows keeping possible tumor remnants us-
ing image fusion techniques. Two kinds of evaluation were performed, i.e., in terms
of region localization containing the tumor residuals and in terms of the voxel being
correctly classified. The experiment showed that the method was able to successfully
localize brain regions, which possibly include tumor residuals for 15 out of 19 patients
(Set A). Average values of the accuracy, the area under the ROC curve and the er-
ror rate were 0.9507, 0.7351 and 0.0493, respectively. A better characterization of the
tumor residuals including texture descriptors, for example, and additional intraopera-
tive ultrasound modalities should improve the performance of the new automatic ap-
proaches. Our approach represents a considerable advance in the computer-assisted
surgery field for automatic detection of residual brain tumors. Nevertheless, at this
stage, it is important to note that the method was tested “offline”, and it is still far
from clinical application. Future works will focus on method improvements and on its
validation of a large patient database.
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Chapter 5

General conclusions and future
perspectives

This work was subdivided in three main stages. In the first part, the study was focused
on the brain tumor segmentation in MR data. Alternative methods applied to brain tu-
mor segmentation were proposed. A localized active contour model integrating an
additional step of background intensity compensation (LACM-BIC) and an active con-
tour powered by multi-population cuckoo search strategy (ACM MCSS) were intro-
duced. Conducted experiments demonstrated that the LACM-BIC outperforms com-
parative methods (i.e, local binary fitting, local Gaussian distribution fitting, localized
Chan-Vese and localized mean separation energy), while the ACM-MCSS achieves bet-
ter results than parametric active contour driven by gradient descent and ACM guided
by multi-population particle swarm optimization strategy in the second case). Specif-
ically, it was shown that the pizza-slice shaped is preferable than rectangular shaped
search window.

The second part dealt with the problem of brain tumor segmentation in US data.
A method based on registration techniques was suggested. The tumor segmentation
was carried out by registering the patient specific model (tumor extracted from MRI)
with tumorous tissue in iUS data. Rigid and affine transformation were tested in the
registration task and the results showed that they reached similar performances. This
approach has proven to be effective for the improved visualization of tumor borders
in iUS volumes of patients with metastasis and glioblastoma.

In the third part, the identification of tumor residuals in US data is addressed. De-
tection of the possible presence of residual tumors at the end of the intervention is
crucial for the operation outcome. Hence, a tool for supporting physician decision
about the presence or absence of residual tumor cells become imperative. To resolve
this issue, a technique combining relevant information automatically extracted from
intraoperative B-mode and CEUS data was proposed. The obtained results sustained
that this approach was able to successfully identify areas with suspicious tissue.

Two major limitations can be found in this work, (1) brain tumor segmentation in
MRI was performed by employing proposed 2D active contour models, and (2) experi-
ments on tumor segmentation and tumor residual identification in US were conducted
offline. Hence, future works could be oriented on the 3D implementation of proposed
ACM and the online test of the methods in operating room. These orientation should
provide useful tools for assisting neurosurgeons in clinical setting. To achieve this goal,
first, a permission from an ethical comission is necessary to perform experiments. Sec-
ond, the developed tools have to pass the process of certification for intraoperative
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use.
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[17] C. Li, C. Y. Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable fitting
energy for image segmentation,” IEEE Transactions on Image Processing, vol. 17,
no. 10, pp. 1940–1949, Oct 2008.

[18] ——, “Implicit active contours driven by local binary fitting energy,” in 2007
IEEE Conference on Computer Vision and Pattern Recognition, June 2007, pp. 1–7.

[19] L. Wang, L. He, A. Mishra, and C. Li, “Active contours driven by local gaussian
distribution fitting energy,” Signal Processing, vol. 89, no. 12, pp. 2435 – 2447,
2009, special Section: Visual Information Analysis for Security.

[20] X. Xie, “Active contouring based on gradient vector interaction and constrained
level set diffusion,” IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 154–
164, Jan 2010.

[21] Y. Tian, F. Duan, M. Zhou, and Z. Wu, “Active contour model combining region
and edge information,” Machine Vision and Applications, vol. 24, no. 1, pp. 47–61,
2013. [Online]. Available: http://dx.doi.org/10.1007/s00138-011-0363-7

[22] L. Chen, Y. Zhou, Y. Wang, and J. Yang, “Gacv: Geodesic-aided c-v method,”
Pattern Recognition, vol. 39, no. 7, pp. 1391 – 1395, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320306000380

75



BIBLIOGRAPHY

[23] H. Wang, T.-Z. Huang, Z. Xu, and Y. Wang, “A two-stage image
segmentation via global and local region active contours,” Neurocomputing, pp. –
, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0925231216302600

[24] H. Zhang and X. Xie, “Divergence of gradient convolution: Deformable seg-
mentation with arbitrary initializations,” IEEE Transactions on Image Processing,
vol. 24, no. 11, pp. 3902–3914, Nov 2015.

[25] S. Zhou, J. Wang, S. Zhang, Y. Liang, and Y. Gong, “Active contour
model based on local and global intensity information for medical image
segmentation,” Neurocomputing, vol. 186, pp. 107 – 118, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231215020469

[26] Q. Wu, Y. Gan, B. Lin, Q. Zhang, and H. Chang, “An active contour model
based on fused texture features for image segmentation,” Neurocomputing,
vol. 151, Part 3, pp. 1133 – 1141, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0925231214013526

[27] K. Zhang, H. Song, and L. Zhang, “Active contours driven by local
image fitting energy,” Pattern Recognition, vol. 43, no. 4, pp. 1199 – 1206,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0031320309003835

[28] Z. Ji, Y. Xia, Q. Sun, G. Cao, and Q. Chen, “Active contours driven by local
likelihood image fitting energy for image segmentation,” Information Sciences,
vol. 301, pp. 285 – 304, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0020025515000262

[29] A. Sexton, A. Todman, and K. Woodward, “Font recognition using shape-based
quad-tree and kd-tree decomposition,” in Proceedings Of The Joint Conference On
Information Sciences, vol. 5, no. 2, 2000, pp. 212 – 215.

[30] S. Armon, “Handwriting Recognition and Fast Retrieval for Hebrew Historical
Manuscripts,” Master’s thesis, The Hebrew University of Jerusalem, 2011.

[31] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth
functions and associated variational problems,” Communications on Pure and
Applied Mathematics, vol. 42, no. 5, pp. 577–685, 1989. [Online]. Available:
http://dx.doi.org/10.1002/cpa.3160420503

[32] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations,” Journal of
Computational Physics, vol. 79, no. 1, pp. 12 – 49, 1988. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0021999188900022

[33] N. Otsu, “A Threshold Selection Method from Gray-level Histograms,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[34] E. Ilunga-Mbuyamba, J. G. Avina-Cervantes, D. Lindner, J. Guerrero-Turrubiates,
and C. Chalopin, “Automatic brain tumor tissue detection based on hierarchical
centroid shape descriptor in tl-weighted mr images,” in 2016 International Con-
ference on Electronics, Communications and Computers (CONIELECOMP), Feb 2016,
pp. 62–67.

76



BIBLIOGRAPHY

[35] P. R. Jethwa, J. H. Lee, R. Assina, I. A. Keller, and S. F. Danish,
“Treatment of a supratentorial primitive neuroectodermal tumor using magnetic
resonance?guided laser-induced thermal therapy,” Journal of Neurosurgery:
Pediatrics, vol. 8, no. 5, pp. 468–475, 2011, pMID: 22044371. [Online]. Available:
http://dx.doi.org/10.3171/2011.8.PEDS11148

[36] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille, “Efficient mul-
tilevel brain tumor segmentation with integrated bayesian model classification,”
IEEE Transactions on Medical Imaging, vol. 27, no. 5, pp. 629–640, May 2008.

[37] L. Wang, Y. Chen, X. Pan, X. Hong, and D. Xia, “Level set segmentation
of brain magnetic resonance images based on local gaussian distribution
fitting energy,” Journal of Neuroscience Methods, vol. 188, no. 2, pp. 316 – 325,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0165027010001226

[38] J. Cepeda-Negrete and R. E. Sanchez-Yanez, “Automatic selection of color
constancy algorithms for dark image enhancement by fuzzy rule-based
reasoning,” Applied Soft Computing, vol. 28, pp. 1 – 10, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494614005961

[39] P. Du, A. Samat, B. Waske, S. Liu, and Z. Li, “Random forest and rotation forest
for fully polarized {SAR} image classification using polarimetric and spatial
features,” {ISPRS} Journal of Photogrammetry and Remote Sensing, vol. 105, pp. 38
– 53, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0924271615000611

[40] P. Olofsson, G. M. Foody, M. Herold, S. V. Stehman, C. E. Woodcock, and
M. A. Wulder, “Good practices for estimating area and assessing accuracy
of land change,” Remote Sensing of Environment, vol. 148, pp. 42 – 57,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0034425714000704

[41] Z. Sun, G. Bebis, and R. Miller, “Monocular precrash vehicle detection: features
and classifiers,” IEEE Transactions on Image Processing, vol. 15, no. 7, pp. 2019–
2034, July 2006.

[42] X.-S. Yang and S. Deb, “Cuckoo Search via Levy flights,” in 2009 World Congress
on Nature & Biologically Inspired Computing (NaBIC). IEEE, 2009, pp. 210–214.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5393690

[43] H. Soneji and R. C. Sanghvi, “Towards the improvement of Cuckoo search algo-
rithm,” International Journal of Computer Information Systems and Industrial Man-
agement Applications, vol. 6, pp. 77–88, 2014.

[44] M. Marichelvam, T. Prabaharan, and X. Yang, “Improved cuckoo search algo-
rithm for hybrid flow shop scheduling problems to minimize makespan,” Ap-
plied Soft Computing, vol. 19, pp. 93–101, Jun. 2014.

[45] C.-C. Tseng, J.-G. Hsieh, and J.-H. Jeng, “Active contour model via multi-
population particle swarm optimization,” Expert Systems with Applications,
vol. 36, no. 3, pp. 5348 – 5352, 2009.

77



BIBLIOGRAPHY

[46] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and
Image Processing, vol. 14, no. 3, pp. 227 – 248, 1980. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0146664X80900544

[47] J. A. Noble and D. Boukerroui, “Ultrasound image segmentation: a survey,”
IEEE Transactions on Medical Imaging, vol. 25, no. 8, pp. 987–1010, Aug 2006.

[48] M. Xian, Y. Zhang, and H. Cheng, “Fully automatic segmentation of
breast ultrasound images based on breast characteristics in space and
frequency domains,” Pattern Recognition, vol. 48, no. 2, pp. 485 – 497,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0031320314002854

[49] Q. Huang, X. Bai, Y. Li, L. Jin, and X. Li, “Optimized graph-based
segmentation for ultrasound images,” Neurocomputing, vol. 129, pp. 216 – 224,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0925231213009648

[50] Q.-H. Huang, S.-Y. Lee, L.-Z. Liu, M.-H. Lu, L.-W. Jin, and A.-H. Li, “A
robust graph-based segmentation method for breast tumors in ultrasound
images,” Ultrasonics, vol. 52, no. 2, pp. 266 – 275, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0041624X11001703

[51] W. Qiu, Y. Chen, J. Kishimoto, S. de Ribaupierre, B. Chiu, A. Fenster, and J. Yuan,
“Automatic segmentation approach to extracting neonatal cerebral ventricles
from 3d ultrasound images,” Medical Image Analysis, vol. 35, pp. 181 – 191,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1361841516301153

[52] Y. Yu, Y. Chen, and B. Chiu, “Fully automatic prostate segmentation from
transrectal ultrasound images based on radial bas-relief initialization and
slice-based propagation,” Computers in Biology and Medicine, vol. 74, pp. 74 – 90,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S001048251630110X

[53] X. Li, C. Li, A. Fedorov, T. Kapur, and X. Yang, “Segmentation of prostate from
ultrasound images using level sets on active band and intensity variation across
edges,” Medical Physics, vol. 43, no. 6, pp. 3090–3103, 2016. [Online]. Available:
http://dx.doi.org/10.1118/1.4950721

[54] S. Ghose, A. Oliver, J. Mitra, R. Martí, X. Lladó, J. Freixenet, D. Sidibé, J. C.
Vilanova, J. Comet, and F. Meriaudeau, “A supervised learning framework
of statistical shape and probability priors for automatic prostate segmentation
in ultrasound images,” Medical Image Analysis, vol. 17, no. 6, pp. 587 – 600,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1361841513000455

[55] J. Bersvendsen, F. Orderud, R. J. Massey, K. Fosså, O. Gerard, S. Urheim, and
E. Samset, “Automated segmentation of the right ventricle in 3d echocardiog-
raphy: A kalman filter state estimation approach,” IEEE Transactions on Medical
Imaging, vol. 35, no. 1, pp. 42–51, Jan 2016.

78



BIBLIOGRAPHY

[56] O. Bernard, J. G. Bosch, B. Heyde, M. Alessandrini, D. Barbosa, S. Camarasu-
Pop, F. Cervenansky, S. Valette, O. Mirea, M. Bernier, P. M. Jodoin, J. S. Domin-
gos, R. V. Stebbing, K. Keraudren, O. Oktay, J. Caballero, W. Shi, D. Rueckert,
F. Milletari, S. A. Ahmadi, E. Smistad, F. Lindseth, M. van Stralen, C. Wang,
. Smedby, E. Donal, M. Monaghan, A. Papachristidis, M. L. Geleijnse, E. Galli,
and J. D’hooge, “Standardized evaluation system for left ventricular segmenta-
tion algorithms in 3d echocardiography,” IEEE Transactions on Medical Imaging,
vol. 35, no. 4, pp. 967–977, April 2016.

[57] J. Huang, X. Yang, Y. Chen, and L. Tang, “Ultrasound kidney segmentation
with a global prior shape,” Journal of Visual Communication and Image
Representation, vol. 24, no. 7, pp. 937 – 943, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1047320313001132

[58] F. Destrempes, M.-H. R. Cardinal, L. Allard, J.-C. Tardif, and G. Cloutier,
“Segmentation method of intravascular ultrasound images of human coronary
arteries,” Computerized Medical Imaging and Graphics, vol. 38, no. 2, pp. 91
– 103, 2014, special Issue on Computing and Visualisation for Intravascular
Imaging. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0895611113001456

[59] S. Sun, M. Sonka, and R. R. Beichel, “Graph-based ivus segmentation with effi-
cient computer-aided refinement,” IEEE Transactions on Medical Imaging, vol. 32,
no. 8, pp. 1536–1549, Aug 2013.

[60] S. Rueda, S. Fathima, C. L. Knight, M. Yaqub, A. T. Papageorghiou, B. Rahmat-
ullah, A. Foi, M. Maggioni, A. Pepe, J. Tohka, R. V. Stebbing, J. E. McManigle,
A. Ciurte, X. Bresson, M. B. Cuadra, C. Sun, G. V. Ponomarev, M. S. Gelfand,
M. D. Kazanov, C. W. Wang, H. C. Chen, C. W. Peng, C. M. Hung, and J. A. No-
ble, “Evaluation and comparison of current fetal ultrasound image segmentation
methods for biometric measurements: A grand challenge,” IEEE Transactions on
Medical Imaging, vol. 33, no. 4, pp. 797–813, April 2014.

[61] S. Dahdouh, E. D. Angelini, G. Grangé, and I. Bloch, “Segmentation of
embryonic and fetal 3d ultrasound images based on pixel intensity distributions
and shape priors,” Medical Image Analysis, vol. 24, no. 1, pp. 255 – 268,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1361841514001893

[62] F. Berton, F. Cheriet, M.-C. Miron, and C. Laporte, “Segmentation of the spinous
process and its acoustic shadow in vertebral ultrasound images,” Computers
in Biology and Medicine, vol. 72, pp. 201 – 211, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010482516300725

[63] M. Aventaggiato, F. Conversano, P. Pisani, E. Casciaro, R. Franchini, A. Lay-
Ekuakille, M. Muratore, and S. Casciaro, “Validation of an automatic segmen-
tation method to detect vertebral interfaces in ultrasound images,” IET Science,
Measurement Technology, vol. 10, no. 1, pp. 18–27, 2016.

[64] A. Müns, J. Meixensberger, S. Arnold, A. Schmitgen, F. Arlt, C. Chalopin,
and D. Lindner, “Integration of a 3d ultrasound probe into neuronavigation,”
Acta Neurochirurgica, vol. 153, no. 7, pp. 1529–1533, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s00701-011-0994-5

79



BIBLIOGRAPHY

[65] G. Unsgaard, T. Selbekk, T. Brostrup Müller, S. Ommedal, S. H. Torp, G. Myhr,
J. Bang, and T. A. Nagelhus Hernes, “Ability of navigated 3d ultrasound to
delineate gliomas and metastases – comparison of image interpretations with
histopathology,” Acta Neurochirurgica, vol. 147, no. 12, pp. 1259–1269, 2005.
[Online]. Available: http://dx.doi.org/10.1007/s00701-005-0624-1

[66] N. Farhat, T. Kapur, and R. Kikinis, “Chapter 6 - role of computers and image
processing in image-guided brain tumor surgery,” in Image-Guided Neurosurgery,
A. J. Golby, Ed. Boston: Academic Press, 2015, pp. 143 – 161. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780128008706000066

[67] H. Chang, Z. Chen, Q. Huang, J. Shi, and X. Li, “Graph-based learning for
segmentation of 3d ultrasound images,” Neurocomputing, vol. 151, Part 2, pp.
632 – 644, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231214013873

[68] E. Hodneland, A. Lundervold, J. Rørvik, and A. Z. Munthe-Kaas, “Normalized
gradient fields for nonlinear motion correction of dce-mri time series,” Comput-
erized Medical Imaging and Graphics, vol. 38, no. 3, pp. 202 – 210, 2014.

[69] B. Fischer and J. Modersitzki, “Ill-posed medicine?an introduction to image reg-
istration,” Inverse Problems, vol. 24, no. 3, p. 034008, 2008.

[70] B. Fuerst, W. Wein, M. Müller, and N. Navab, “Automatic ultrasound?mri regis-
tration for neurosurgery using the 2d and 3d {LC2} metric,” Medical Image Anal-
ysis, vol. 18, no. 8, pp. 1312 – 1319, 2014, special Issue on the 2013 Conference on
Medical Image Computing and Computer Assisted Intervention.

[71] H. Rivaz, Z. Karimaghaloo, V. S. Fonov, and D. L. Collins, “Nonrigid registration
of ultrasound and mri using contextual conditioned mutual information,” IEEE
Transactions on Medical Imaging, vol. 33, no. 3, pp. 708–725, March 2014.

[72] E. Hodneland, A. Lundervold, J. Rørvik, and A. Z. Munthe-Kaas, “Normal-
ized gradient fields and mutual information for motion correction of dce-mri
images,” in 2013 8th International Symposium on Image and Signal Processing and
Analysis (ISPA), Sept 2013, pp. 516–521.

[73] Z. Lai, J. Hu, C. Liu, V. Taimouri, D. Pai, J. Zhu, J. Xu, and J. Hua, “Intra-patient
supine-prone colon registration in ct colonography using shape spectrum,” in
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010: 13th
International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part I,
T. Jiang, N. Navab, J. P. W. Pluim, and M. A. Viergever, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 332–339.

[74] F. Commandeur, A. Simon, R. Mathieu, M. Nassef, J. D. Ospina, Y. Rolland,
P. Haigron, R. D. Crevoisier, and O. Acosta, “Mri to ct prostate registration
for improved targeting in cancer external beam radiotherapy,” IEEE Journal of
Biomedical and Health Informatics, vol. PP, no. 99, pp. 1–1, 2016.

[75] J. F. Liu, F. S. Cui, Z. J. Liu, and J. M. Liu, “A technique for prostate registration
by finite element modeling,” in World Congress on Medical Physics and Biomedical
Engineering, June 7-12, 2015, Toronto, Canada, D. A. Jaffray, Ed. Cham: Springer
International Publishing, 2015, pp. 870–873.

80



BIBLIOGRAPHY

[76] H. Rivaz, Z. Karimaghaloo, V. S. Fonov, and D. L. Collins, “Nonrigid registration
of ultrasound and mri using contextual conditioned mutual information,” IEEE
Transactions on Medical Imaging, vol. 33, no. 3, pp. 708–725, March 2014.

[77] R. Xu, P. Athavale, A. Nachman, and G. A. Wright, “Multiscale registration
of real-time and prior mri data for image-guided cardiac interventions,” IEEE
Transactions on Biomedical Engineering, vol. 61, no. 10, pp. 2621–2632, Oct 2014.

[78] E. Haber and J. Modersitzki, “Intensity gradient based registration and fusion
of multi-modal images,” in Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October
1-6, 2006. Proceedings, Part II, R. Larsen, M. Nielsen, and J. Sporring, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 726–733.

[79] J. Modersitzki, “Fair: Flexible algorithms for image registration.” Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2009.

[80] A. V. Moiyadi and P. Shetty, “Direct navigated 3d ultrasound for resection of
brain tumors: a useful tool for intraoperative image guidance,” Neurosurgical
Focus, vol. 40, no. 3, p. E5, 2016, pMID: 26926063. [Online]. Available:
http://dx.doi.org/10.3171/2015.12.FOCUS15529

[81] T. Selbekk, A. S. Jakola, O. Solheim, T. F. Johansen, F. Lindseth, I. Reinertsen,
and G. Unsgård, “Ultrasound imaging in neurosurgery: approaches to
minimize surgically induced image artefacts for improved resection control,”
Acta Neurochirurgica, vol. 155, no. 6, pp. 973–980, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s00701-013-1647-7

[82] X. Xiao, L. Dong, Q. Jiang, X. Guan, H. Wu, and B. Luo, “Incorporating contrast-
enhanced ultrasound into the bi-rads scoring system improves accuracy
in breast tumor diagnosis: A preliminary study in china,” Ultrasound in
Medicine & Biology, vol. 42, no. 11, pp. 2630–2638, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0301562916301648

[83] N. Masumoto, T. Kadoya, A. Amioka, K. Kajitani, H. Shigematsu, A. Emi,
K. Matsuura, K. Arihiro, and M. Okada, “Evaluation of malignancy grade
of breast cancer using perflubutane-enhanced ultrasonography,” Ultrasound in
Medicine & Biology, vol. 42, no. 5, pp. 1049–1057, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0301562916000089

[84] M. Friedrich-Rust, T. Klopffleisch, J. Nierhoff, E. Herrmann, J. Vermehren, M. D.
Schneider, S. Zeuzem, and J. Bojunga, “Contrast-enhanced ultrasound for the
differentiation of benign and malignant focal liver lesions: a meta-analysis,”
Liver International, vol. 33, no. 5, pp. 739–755, 2013. [Online]. Available:
http://dx.doi.org/10.1111/liv.12115

[85] T. Kim and H. Jang, “Contrast-enhanced ultrasound in the diagnosis of nodules
in liver cirrhosis,” World J Gastroenterol, vol. 13, no. 20, pp. 3590–3596, 2014.

[86] R. G. Barr, C. Peterson, and A. Hindi, “Evaluation of indeterminate renal
masses with contrast-enhanced us: A diagnostic performance study,” Radiology,
vol. 271, no. 1, pp. 133–142, 2014, pMID: 24475802. [Online]. Available:
http://dx.doi.org/10.1148/radiol.13130161

81



BIBLIOGRAPHY

[87] Y. Cai, L. Du, F. Li, J. Gu, and M. Bai, “Quantification of enhancement of
renal parenchymal masses with contrast-enhanced ultrasound,” Ultrasound in
Medicine & Biology, vol. 40, no. 7, pp. 1387–1393, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0301562914000763

[88] S. Houtzager, H. Wijkstra, J. J. M. C. H. de la Rosette, and M. P. Laguna,
“Evaluation of renal masses with contrast-enhanced ultrasound,” Current
Urology Reports, vol. 14, no. 2, pp. 116–123, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11934-013-0309-x

[89] E. Ilunga-Mbuyamba, J. G. Avina-Cervantes, D. Lindner, I. Cruz-Aceves,
F. Arlt, and C. Chalopin, “Vascular structure identification in intraoperative 3d
contrast-enhanced ultrasound data,” Sensors, vol. 16, no. 4, pp. 497,1–14, 2016.
[Online]. Available: http://www.mdpi.com/1424-8220/16/4/497

[90] F. Prada, M. Del Bene, M. Saini, P. Ferroli, and F. DiMeco, “Intraoperative
cerebral angiosonography with ultrasound contrast agents: how i do it,”
Acta Neurochirurgica, vol. 157, no. 6, pp. 1025–1029, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s00701-015-2412-x

[91] C. Chalopin, K. Krissian, J. Meixensberger, A. Müns, F. Arlt, and D. Lindner,
“Evaluation of a semi-automatic segmentation algorithm in 3d intraoperative
ultrasound brain angiography,” Biomedizinische Technik/ Biomedical Engineering,
vol. 58, no. 3, pp. 293–302., Jun 2013.

[92] W. He, X.-Q. Jiang, S. Wang, M. zhi Zhang, J. zong Zhao, H. zhao Liu,
J. Ma, D. ying Xiang, and L. shu Wang, “Intraoperative contrast-enhanced
ultrasound for brain tumors,” Clinical Imaging, vol. 32, no. 6, pp. 419–424,
2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0899707108001939

[93] F. Prada, A. Perin, A. Martegani, L. Aiani, L. Solbiati, M. Lamperti, C. Casali,
F. Legnani, L. Mattei, A. Saladino, M. Saini, and F. Dimeco, “Intraoperative
contrast-enhanced ultrasound for brain tumor surgery,” Neurosurgery, vol. 74,
no. 5, pp. 542–552, 2014.

[94] K. Ritschel, I. Pechlivanis, and S. Winter, “Brain tumor classification on
intraoperative contrast-enhanced ultrasound,” International Journal of Computer
Assisted Radiology and Surgery, vol. 10, no. 5, pp. 531–540, 2015. [Online].
Available: http://dx.doi.org/10.1007/s11548-014-1089-6

[95] F. Arlt, C. Chalopin, A. Müns, J. Meixensberger, and D. Lindner, “Intraoperative
3d contrast-enhanced ultrasound (ceus): a prospective study of 50 patients with
brain tumours,” Acta Neurochirurgica, vol. 158, no. 4, pp. 685–694, 2016. [Online].
Available: http://dx.doi.org/10.1007/s00701-016-2738-z

[96] F. Prada, M. D. Bene, R. Fornaro, I. G. Vetrano, A. Martegani, L. Aiani, L. M.
Sconfienza, G. Mauri, L. Solbiati, B. Pollo, and F. DiMeco, “Identification
of residual tumor with intraoperative contrast-enhanced ultrasound during
glioblastoma resection,” Neurosurgical Focus, vol. 40, no. 3, p. E7, 2016, pMID:
26926065. [Online]. Available: http://dx.doi.org/10.3171/2015.11.FOCUS15573

82



BIBLIOGRAPHY

[97] G. Piella, “A general framework for multiresolution image fusion: from pixels to
regions,” Information Fusion, vol. 4, no. 4, pp. 259–280, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253503000460

[98] J. Ma, C. Chen, C. Li, and J. Huang, “Infrared and visible image fusion via
gradient transfer and total variation minimization,” Information Fusion, vol. 31,
pp. 100–109, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S156625351630001X

[99] C. Han, H. Zhang, C. Gao, C. Jiang, N. Sang, and L. Zhang, “A remote sens-
ing image fusion method based on the analysis sparse model,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 1, pp.
439–453, Jan 2016.

[100] H. Ghassemian, “A review of remote sensing image fusion methods,”
Information Fusion, vol. 32, Part A, pp. 75–89, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253516300173

[101] Z. Lu, X. Jiang, and A. C. Kot, “A color channel fusion approach for face recog-
nition,” IEEE Signal Processing Letters, vol. 22, no. 11, pp. 1839–1843, Nov 2015.

[102] C. Chen, R. Jafari, and N. Kehtarnavaz, “Improving human action recognition
using fusion of depth camera and inertial sensors,” IEEE Transactions on Human-
Machine Systems, vol. 45, no. 1, pp. 51–61, Feb 2015.

[103] G. Bhatnagar, Q. J. Wu, and Z. Liu, “A new contrast based multimodal
medical image fusion framework,” Neurocomputing, vol. 157, pp. 143–152,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0925231215000466

[104] X. Liu, W. Mei, and H. Du, “Multimodality medical image fusion algorithm
based on gradient minimization smoothing filter and pulse coupled neural
network,” Biomedical Signal Processing and Control, vol. 30, pp. 140–148,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1746809416300659

[105] S. Das and M. K. Kundu, “A neuro-fuzzy approach for medical image fusion,”
IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, pp. 3347–3353, Dec
2013.

[106] Z. Zhu, Y. Chai, H. Yin, Y. Li, and Z. Liu, “A novel dictionary learning
approach for multi-modality medical image fusion,” Neurocomputing, vol. 214,
pp. 471–482, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231216306749

[107] G. Bhatnagar, Q. M. J. Wu, and Z. Liu, “Directive contrast based multimodal
medical image fusion in nsct domain,” IEEE Transactions on Multimedia, vol. 15,
no. 5, pp. 1014–1024, Aug 2013.

[108] X. Xu, D. Shan, G. Wang, and X. Jiang, “Multimodal medical image fusion
using pcnn optimized by the qpso algorithm,” Applied Soft Computing, vol. 46,
pp. 588–595, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1568494616301570

83



BIBLIOGRAPHY

[109] C. Kavitha and C. Chellamuthu, “Medical image fusion based on hybrid
intelligence,” Applied Soft Computing, vol. 20, pp. 83–94, 2014, hybrid intelligent
methods for health technologies. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1568494613004043

[110] S. F. Nemec, M. A. Donat, S. Mehrain, K. Friedrich, C. Krestan, C. Matula,
H. Imhof, and C. Czerny, “Ct?mr image data fusion for computer assisted
navigated neurosurgery of temporal bone tumors,” European Journal of Radiology,
vol. 62, no. 2, pp. 192 – 198, 2007, update in Small Bowel and Abdominal
Imaging. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0720048X06005171

[111] F. Prada, M. Del Bene, L. Mattei, C. Casali, A. Filippini, F. Legnani,
A. Mangraviti, A. Saladino, A. Perin, C. Richetta, I. Vetrano, A. Moiraghi,
M. Saini, and F. DiMeco, “Fusion imaging for intra-operative ultrasound-based
navigation in neurosurgery,” Journal of Ultrasound, vol. 17, no. 3, pp. 243–251,
2014. [Online]. Available: http://dx.doi.org/10.1007/s40477-014-0111-8

[112] H. K. Inoue, A. Nakajima, H. Sato, S. Noda, J. Saitoh, and Y. Suzuki, “Image fu-
sion for radiosurgery, neurosurgery and hypofractionated radiotherapy,” Cureus,
vol. 7, no. 3, 2015.

[113] N. Hui-Fuang, “Automatic thresholding for defect detection,” Pattern Recog-
nition Letters, vol. 27, no. 14, pp. 1644–1649, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016786550600119X

[114] P. K. Sahoo, S. Soltani, A. K. Wong, and Y. C. Chen, “A survey of thresholding
techniques,” Comput. Vision Graph. Image Process., vol. 41, no. 2, pp. 233–260, feb
1988. [Online]. Available: http://dx.doi.org/10.1016/0734-189X(88)90022-9

[115] S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi, “Multilevel thresholding
for image segmentation through a fast statistical recursive algorithm,” Pattern
Recognition Letters, vol. 29, pp. 119–125, 2008.

[116] P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” in Proc.
BMVC, 2009, pp. 91.1–91.11, doi:10.5244/C.23.91.

[117] I. Cherif, V. Solachidis, and I. Pitas, A Tracking Framework for Accurate Face
Localization. Boston, MA: Springer US, 2006, pp. 385–393. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-34747-9_40

[118] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,”
International Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, 2015. [Online].
Available: http://dx.doi.org/10.1007/s11263-014-0733-5

84


	General introduction
	Brain tumor surgery context
	Definitions
	Background

	Problems and research topic
	Preoperative MR data
	Intraoperative US data

	Aims and motivations
	Originality and methodology
	MRI brain tumor segmentation
	US brain tumor segmentation
	Identification of residual brain tumors

	Materials and metrics
	Outline

	Brain tumor segmentation in preoperative MR data
	Introduction
	Related works
	Contributions
	Region-base ACM
	Edge-based ACM

	Foundations
	Hierarchical Centroid Shape Descriptor
	Active contour model: Snake
	Chan-Vese model
	Mean Separation Energy method
	Localizing Region-based Active Contour Model

	Proposed method I: localized active contour model with background intensity compensation
	Patient image dataset
	Segmentation approach
	Contour initialization and brain tumor segmentation
	Experimental Results
	Conclusions

	Proposed method II: Automatic selection of LRACM using image content analysis for brain tumor segmentation
	System description
	Feature extraction
	Patient Image Dataset
	Experimental Results

	Proposed method III: Active Contours Driven by Cuckoo Search Strategy for Brain Tumor Images Segmentation
	Cuckoo Search algorithm
	Tumor segmentation approach
	Using Rectangular Shaped Search Windows (RSSW)
	Using Pizza-slice Shaped Search Windows (PSSW)
	Experimental Results and Discussion
	Synthetic test images
	Medical test images
	Conclusions


	Brain tumor segmentation in intraoperative US data
	Introduction
	Related works
	Proposed method: patient specific model based segmentation of brain tumors in 3D-iUS
	Patient image dataset
	Preprocessing
	Automatic segmentation method

	Experimental results and disccusion
	Method accuracy evaluation
	Computation time assessment
	Proposed method versus traditional approach

	Conclusion

	Automatic Identification of Residual Brain Tumors
	Introduction
	Theory
	Main contributions
	Proposed method: Image Fusion for Residual Brain Tumor Identification
	Patient Image Dataset
	Image Fusion for Residual Brain Tumor Identification
	Validation

	Experimental Results
	Evaluation of the Influence of the Class Number in the Segmentation Step
	Method Evaluation

	Conclusions

	General conclusions and future perspectives 

