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Preface

Image segmentation is a central topic in computer vision research with a long tradition

as one of the fundamental problems. Its importance is based on its use as a pre-analysis

of images in the development of high-level tasks, such as object recognition, tracking,

scene understanding, image retrieval, just to mention a few. The performance of these

aforementioned high-level tasks largely depends on the accuracy and robustness of the

image segmentation method.

Segmentation refers to the process of partitioning a digital image into multiple re-

gions. The partition consists in assigning a label to every pixel within an image, in such

a way that pixels with the same label are homogeneous in a set of particular features,

and in addition, are spatially connected. The main motivation for image segmentation

is to provide a compact representation of data, wherein all subsequent processing can

be done at a region level, instead of at a pixel level.

A considerable number of features can be taken into account during the partition

process, e.g. gray-level, color, texture, shape, depth. Simple algorithms might be

able to separate regions with features without variations. However, they might have

difficulties when dealing with regions with uneven features. This is the case of natural

images, where conditions of non-uniform illumination, noise, feature inhomogeneities

and general uncertainties are always present. Although image segmentation is one of the

fundamental problems within computer vision research, it still represents a challenging
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task due to the difficulty in the management of such conditions.

Computational intelligence is a set of nature-inspired methodologies to address the

design of intelligent systems, which are tolerant to imprecision, uncertainty, partial

truth and approximation. Such methodologies have been developed in order to achieve

tractability, robustness and low-cost solutions. Computational intelligence primarily

includes methodologies like artificial neural networks, evolutionary computation, fuzzy

logic and rough sets. All these techniques have been successfully employed for various

image processing tasks, including image segmentation, enhancement and classification,

both individually or in combination with other computational intelligence techniques.

The use of these methodologies for image segmentation tasks has a growing interest,

since they are able to address conditions that classical hard computing techniques can-

not.

In this study, we propose two image segmentation approaches based on computa-

tional intelligence elements, specifically on rough set’s elements. In our methods, we

aim to represent the pixels that are similar to their neighbors, resulting in a description

tolerant of feature variations and noise. The first approximation presented in this study

is an improvement to the existing rough set-based methods using only color cues. In

the second approach, the integration of texture cues is proposed. These improvements

allow our method to overcome some performance issues shown by prior rough set-based

approaches. The method is evaluated through a set of qualitative and quantitative

tests over a comprehensive database, showing that the proposed approach produces

high-quality segmentation outcomes, better than those obtained using previous rough

set-based and state-of-the-art segmentation approaches.
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Structure of this dissertation

This dissertation is organized in two parts, which comprises the two image segmenta-

tion approaches proposed in this study. The first part includes Chapters 1 to 3. In

Chapter 1, an introduction to the thesis subject is provided. Additionally, the image

segmentation problem is defined in detail and the most common segmentation evalu-

ation frameworks are described. Moreover, an overview of the use of computational

intelligence approaches to image segmentation tasks is presented. In Chapter 2, the

background of the rough set theory and its use in image segmentation, is reviewed.

In Chapter 3, an improvement to a previously proposed rough-set-based segmenta-

tion approach using an adaptable threshold selection and perceptual color spaces, is

introduced. Here, a number of issues detected in the previously proposed approach are

addressed.

The second part of this dissertation comprises the addition of texture features to the

rough-set-based segmentation approach. Hence, a comprehensive review of the texture

analysis is first presented in Chapter 4. In this chapter, an overview of the methods

for texture extraction and texture representation is presented. Additionally, the funda-

mental problems of texture analysis, like classification, synthesis and segmentation of

texture, are reviewed. In Chapter 5, the integration of color and texture cues as an

improvement of the segmentation approach, is presented. Finally, in the General Con-

clusions, the main results and contributions obtained in the thesis are summarized, and

besides themes for further investigation are proposed.
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CHAPTER 1

Introduction

Image segmentation has been a central problem in computer vision and pattern recog-

nition for many years. The goal of segmentation is to simplify the representation of

an image into something that is more meaningful and easier to analyze. Segmentation

refers to the process of partitioning a digital image into homogeneous regions [29], that

are assumed to correspond to significant objects in the scene.

The partition consists in separating regions using a feature homogeneity criterion

and a spatial connection norm. This means that if two regions share the same fea-

tures, but they are disjoint; they are considered as two different segments. This is, in

fact, the difference between segmentation and clustering. According to Haralick and

Shapiro [48], the difference is that in clustering, the grouping is done in the feature

space, while in segmentation, the grouping is done in the spatial domain of the image.

The segmentation task can be equivalently achieved by finding the boundaries between

the regions. These two strategies, region-based and edge-based, have been proven to be

equivalent just in the case that the boundaries are closed [78]. In order to concentrate

all these concepts, we can say that the main motivation for image segmentation is to
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CHAPTER 1. INTRODUCTION

provide a compact representation of data, wherein all subsequent processing can be done

at a segment level. This preprocessing results in significant computational gains and an

improvement in the understanding of the image content. Segmentation is mainly em-

ployed as a preprocessing to enhance, analyze, categorize and concentrate information

from images.

1.1 Image Segmentation: Problem definition

The segmentation problem has been formally defined by Pal and Pal [98] as: if F is the

set of all pixels and P () is a uniformity (homogeneity) predicate defined on groups of

connected pixels, the segmentation is a partitioning of the set F into a set of connected

subsets of regions (S1, S2, . . . , Sn) such that

n
∪

i=1

Si = F with Si

∩

Sj = ∅, i ̸= j. (1.1)

The uniformity predicate P (Si) = true for all regions (Si) and P (Si ∪ Sj) = false,

when Si is adjacent to Sj .

According to Haralick [45], a good segmentation must have certain characteristics:

• Regions of a segmented image should be uniform and homogeneous with respect

to some characteristic such as intensity, gray tone, color or texture.

• The interior of each region should be simple and without small holes.

• Adjacent regions of segmentation should have significantly different values with

respect to the characteristic on which they are uniform.

• Boundaries of each segment should be smooth, not ragged, and must be spatially

accurate.

The fulfillment of all these characteristics in a simultaneous manner represents a

major challenge and due to their complexity, a number of methods has been developed in

3



CHAPTER 1. INTRODUCTION

addressing the problem of image segmentation. The main approximations are reviewed

in the next section.

1.2 Image segmentation: Literature review

In this section, the state-of-the-art of this research field is reviewed and discussed. The

objective is to develop a useful separation of segmentation algorithms and to delineate

the scope of the present study.

A considerable number of approaches has been proposed in order to address the

problem of image segmentation. Due to the large number of methods and their technical

differences, some authors have focused their efforts to categorize them. From a high-

level perspective, Vantaram and Saber [136] have categorized segmentation procedures

centered in the final application. This categorization may be carried out according to:

(1) the human interaction, (2) the nature of the media and (3) the number and type

of attributes used. The first criterion discriminates the approaches that require human

intervention from those that operate fully unsupervised. The second criterion separates

approaches depending on whether these methods are intended to be used on video

sequences or still images. Finally, the last criterion categorizes methods according to the

features used for the association of pixels, e.g. color, texture or a suitable combination.

The scope of the literature review presented here is limited to the features used, yet it is

focused on methods that are fully unsupervised and that are applied for static images.

The early surveys by Fu and Mui [35], Haralick and Shapiro [48] and Pal and Pal [98]

were mainly focused on the definition of the segmentation problem and the first ap-

proximations developed for the treatment of monochromatic images. Other specialized

surveys for a given use of features have been also proposed. Surveys for color-based

image segmentation have been presented by Cheng et al. [14], Lucchese and Mitra [78],

and the more recent work by Vantaram and Saber [136]. A survey for the use of texture

features is the presented by Reed and Dubuf [107]. In the same way, the integration of
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CHAPTER 1. INTRODUCTION

color-texture descriptors is reviewed by Ilea and Whelan [53].

Depending on their technical grounding, the segmentation methods may be also

separated into two groups: spatially-guided and spatially-blind methods. The main

idea of the spatially-guided approaches is that pixels that are neighbors, may belong

to the same segment or group. Hence, the goal is to agglomerate adjacent pixels.

Their main drawback is that, even when the resulting segmented regions are spatially

well-connected and compact, there is no guarantee that all pixels in a segment are

homogeneous in a specific feature space. Moreover, sequential design (pixel-by-pixel

agglomeration) of these procedures, often results in intensive computational schemes

with significant memory requirements. Among these approaches, the quality of the

segmentation is dependent on the initial seeds’ selection, and on the homogeneity criteria

used. The spatially-blind algorithms assume that the features on the surface of an object

are unvarying and therefore, the object will be represented as a cluster of points in the

given feature space. Because of their simplicity and low computational cost, this kind

of methods have been widely adopted in the development of segmentation algorithms.

Different methods in both spatially-guided and spatially-blind approximations have been

proposed based on the use of a variety of features or combination of them. The most-

used features are discussed below.

1.2.1 Color and intensity-based approaches

Color information is the most common feature used to determine similarity between

pixels in an image. This is because color data is directly available from the pixels.

As it was mentioned before, following their technical basis, these methods can be sep-

arated in spatially-guided and spatially-blind approaches. On one hand, among the

spatially-guided image segmentation methods, it is possible to find two main tenden-

cies: region-based and energy-based techniques. The region-based methods, typically

employ techniques involving region growing [32, 24, 137, 33] and split-and-merging. The

region growing approach starts with the definition of a pixel, also called seed. Then,
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CHAPTER 1. INTRODUCTION

pixels around the seed are accumulated, based on a color homogeneity criterion. The

growth stops when no pair of pixels satisfy the color similarity. The split-and-merge

techniques consist in repetitively splitting the image until all the segments satisfy the

particular color uniformity criterion. After the splitting, an additional region merging

is carried out in order to fuse neighboring subregions that may belong to the same ob-

ject in the scene. The energy-based techniques aim to minimize energy cost functions.

Among this kind of methods, we can find the active contours approximations [58, 105]

and the graph-based segmentation techniques [118, 82]. The active contours attempt to

minimize an energy associated to a given contour as a sum of an internal and external

energy. Among the graph-based methods, an image is considered as a graph, where the

pixels are nodes. The segmentation is performed by a max-flow/min-cut optimization.

On the other hand, the spatially-blind methods perform segmentation in a given

color representation ignoring the spatial relationship between pixels. Examples of these

approaches include clustering [56, 13] and histogram-based approximations [64, 15].

Clustering basically views each pixel intensity as a point within a cloud in an n-

dimensional feature space. The main idea is to analyze the cloud of points to identify

meaningful pixel groups or clusters by separating the cloud using predefined metrics

or objective functions. One of the most popular approaches is the use of the k-means

algorithm [75, 87], which is an iterative technique that is used to partition an image into

K clusters. The k-means algorithm is guaranteed to converge, but it may not return

the optimal solution. Moreover, the quality of the solution depends on the initial set of

clusters and the value of K. Another popular method in clustering is the Mean Shift ap-

proach, which is a non-parametric feature-space analysis technique, also called as mode

seeking algorithm. The Mean Shift procedure was originally presented by Fukunaga

and Hostetler [36] for pattern recognition applications. However, its usage for image

segmentation was introduced by Comaniciu and Meer [20]. In this method, the clusters

are places in the feature space where data points tend to be closer. Assuming that the

data are samples from a probability distribution, the centers of the clusters are located
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CHAPTER 1. INTRODUCTION

on the local maxima.

The histogram-based methods are established on the principle that each object in

the image may be identified as a mode in the histogram. These methods offer some

advantages over the clustering approximations. This is because in the histogram-based

methods, there is no need for a-priori information about the image, such as the num-

ber of classes or clusters, or the palette of colors to be used. In this technique, the

representative objects within the scene are identified as significant peaks in the inten-

sity histogram. Depending on the number of peaks, a set of thresholds is established

and a multithreshold segmentation is carried out. Disadvantages of this approximation

include the sensitivity to noise and intensity variations, the difficulty to identify signifi-

cant peaks in the histogram, and the fact that the regular histogram ignores the spatial

relation between neighboring pixels. In order to address the problems of the histogram-

based methods, Mohabey and Ray [89] introduced the concept of histon, based on the

rough set theory [101]. More details about this methodology and further improvements

are detailed in Chapters 2 and 3.

Concerning the color-features representation, it is known that the performance of a

color-based segmentation method highly depends on the choice of the color space [6].

The RGB color space is the most used in the literature for image segmentation tasks.

A particular color in the RGB space is specified in terms of the intensities of three

additive colors: red, green and blue [31]. Although the RGB space is the most used,

this representation does not permit the emulation of the higher level processes which

allow the perception of color in the human visual system [78].

Different studies have been oriented to the determination of the best suited color

representation for a given segmentation approach [43, 7, 6, 21, 117]. Some of them have

found that the so-called perceptual color spaces, e.g. CIELab and CIELuv, are the

most appropriate when the resemblance to the human visual system is desirable. The

main advantage of the perceptual color representations is that the Euclidean distance

between two points is proportional to the difference perceived by a human between the

7



CHAPTER 1. INTRODUCTION

two colors represented by such points. This ability to express color difference of human

perception by Euclidean distance is very important [14] because any direct comparison

between colors can be performed based on their geometric separation.

1.2.2 Texture-based methods

Texture segmentation basically involves the identification of regions with the same tex-

ture features, so that further analysis can be performed on the respective regions alone.

An effective texture segmentation algorithm is very useful in many application areas,

such as analysis of remote sensing images, industrial monitoring of product quality,

medical image analysis and image retrieval.

Different approaches to image segmentation using textural features have been pro-

posed. Early methods proposed for unsupervised region-based texture segmentation

include approaches based on split-and-merge methods [12], pyramid node linking [104],

selective feature smoothing with clustering [23], and a quad-tree method combining

statistical and spatial information [122]. Examples of more recent approaches are meth-

ods based on local binary patterns for both static [95, 106] and dynamic textures [10],

Markov random field models [114], structure-based segmentation [127, 84] and active

contours [112, 113].

1.2.3 Color-texture-based approximations

As it was mentioned before, there is a significant number of features that may be

considered during the segmentation process, such as gray-level, color, motion, texture,

etc. However, the task of finding a single feature to describe an image content may

be difficult. A significant amount of proposals have been dedicated to the development

of segmentation algorithms where color or texture are analyzed alone. However, it has

been found that humans often combine multiple sensory cues to improve their perceptual

performance [110]. This fact has motivated recent research to focus on the integration

of more than one feature. In particular, the integration of color and texture cues has

8
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shown to be strongly linked to the human perception [53].

Recently, Ilea and Whelan [53] have categorized such segmentation methods accord-

ing to the approach used for the extraction and integration of color and texture features.

Three major trends have been identified: (1) Implicit color-texture integration, where

the texture is extracted from one or multiple color channels. (2) Extraction of fea-

tures in sequence and (3) extraction of color and texture features on separate channels

and their combination in the segmentation process. According to the authors, the ap-

proaches that extract cues in separate channels have the advantage of optimizing the

contribution of each feature in the segmentation algorithm.

Depending on their technical basis, the segmentation methods that combine color

and texture may be also separated into the two groups previously mentioned: spatially-

guided and spatially-blind methods. Examples of the spatially-guided approaches in-

clude the split-and-merge [93, 11], region growing [37, 33], watershed [3, 86] and energy

minimization [44, 60]. For these approaches, the quality of the segmentation depends

on the initial seeds selection and on the homogeneity criteria used. On the other hand,

examples of spatially-blind approximations include the clustering methods [88, 97, 52].

Because of their simplicity, this kind of methods have been widely adopted in the devel-

opment of color-texture segmentation algorithms. However, it results difficult to adjust

the optimal number of clusters and their initialization for different images. Therefore,

the color-texture information may not be optimally evaluated during the space parti-

tioning process.

1.3 Performance evaluation of segmentation algorithms

Although the characteristics for a good segmentation have been established, image

segmentation is often viewed as an ill-defined problem with no perfect solution but

multiple, generally acceptable solutions [136]. An objective evaluation performance of a

given algorithm depends on the final application. Computational efficiency or stability
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may be important for some applications, while for other applications the resemblance to

the human perceptual system may be desirable. A usual practice for the evaluation is

to show a small set of the resulting images and to indicate why the outcomes are good.

Due to the subjectivity of this evaluation methodology, different approaches have been

proposed.

1.3.1 Segmentation Benchmark

Taking into account the subjectivity of the evaluation frameworks and the lack of a

standard database, a segmentation benchmark, named Berkeley Segmentation Data Set

and Benchmark (BSD), was developed in the University of California at Berkeley [83].

Such a database consists of 300 images of 481 × 321 pixels size, and it is an empirical

basis for the evaluation of segmentation algorithms. For each image, a set of 5 to 9

reference segmentations are available (a total of 1633 manual segmentations) and can

be used to quantify the reliability of a given method. Furthermore, the diversity of

content in this data set, that includes landscapes, animals, buildings and portraits,

makes it a challenge for any segmentation algorithm. Samples of the original images

and of the manually generated regions can be seen in Fig. 1.1.

A thorough analysis of the obtained ground truth from the BSD has yielded to the

conclusions [83] that (1) an arbitrary image may have a unique suitable segmentation

outcome while others possess multiple acceptable solutions and (2) the variability in

adequate solutions is primarily due to differences in the level of attention (or granularity)

and the degree of detail from one human observer to another. Therefore, segmentation

algorithms must aim to provide a generally acceptable outcome rather than a universal

solution.

Once the benchmark segmentation database was established, different quantitative

measures were proposed in order to evaluate segmentation algorithms in an objective

manner. Quantitative measures are used to evaluate how well a segmentation algorithm

imitates human perceptual grouping, thus they are used in conjunction with the BSD.
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Figure 1.1: Four examples out of the 300 of the Berkeley Segmentation Benchmark.
Original images and three examples of the manually generated segmentations.
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In the context of this task, Unnikrishnan [133] established a set of requirements for a

measure of segmentation correctness:

• Non-degeneracy: It does not have degenerate cases where unrealistic input in-

stances give abnormally high values of similarity.

• No assumptions about data generation: It does not assume equal number of the

labels or region sizes in the segmentations.

• Adaptive accommodation of refinement: The term refinement denotes the degree

of detail in the segmentation of a given image. A given measure must include the

differences in granularity at which the image is perceived by different observers.

• Comparable scores: A given measure provides scores that permit meaningful com-

parison between segmentations of different images and between different segmen-

tations of the same image.

According to these aforementioned requirements, three metrics were selected in

our study for segmentation algorithms assessment: the Boundary Displacement Er-

ror (BDE)[34], the Global Consistency Error (GCE) [83] and the Probabilistic Rand

Index (PRI) [132].

1.3.2 The Boundary Displacement Error (BDE)

The BDE [34] is intended to evaluate the segmentation quality in terms of the precision

of the extracted region boundaries. The BDE measures the average displacement error

between the boundary pixels of the segmented image and the closest boundary pixels in

the set of ground truth segmentations. Let B represent the boundary points set derived

from the segmentation and GB the boundary ground truth. Two distance distribution

signatures are used, one from the ground truth to the estimated segmentation, denoted

by DB
G , and the other one is from the estimated segmentation to the ground truth, de-

noted by DG
B . A distance error from a set B1 to a set B2 of boundary points, denoted by
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DB2

B1
, is a discrete function whose distribution characterizes the discrepancy, measured

in distance, from B1 to B2. The distance from an arbitrary point x in set B1 to B2 is

defined as the minimum distance from x to all the points in B2, as it is seen in Eq. 1.2,

d(x,B2) = min dE(x, y), ∀y ∈ B2, (1.2)

where dE denotes the Euclidean distance between points x and y. The discrepancy

between two boundary images B1 and B2 is described by Eq. 1.3,

DB2

B1
=

1

n

∑

x∈B1

d(x,B2), (1.3)

where n is the number of pixels in the image B1. The final BDE is computed with

the mean between DB2

B1
and DB1

B2
. A BDE with a near-zero mean and a small standard

deviation indicates a high quality of the segmentation outcome.

BDE = (DB2

B1
+DB1

B2
)/2. (1.4)

1.3.3 Global Consistency Error (GCE)

The GCE [83] is designed so that when comparing two different segmentations, if one is

a refinement of the other, the error value should be very small, or even zero. By refine-

ment, the authors mean that the segmentations are consistent, but one segmentation

has a higher level of detail than the other. The GCE takes two segmentations S1 and

S2 as inputs, and produces a real-valued output in the range [0, 1], where zero means

no error. For a given pixel pi, consider the regions in S1 and S2 that contain such pixel.

The regions are sets of pixels. If one segment is a proper subset of the other, a pixel

lies in an area of refinement and the local error should be zero. If there is no subset

relationship, then, the two regions overlap in an inconsistent manner. Let \ denote set

difference and |x| be the cardinality of set x. If R(S, pi) is the set of pixels corresponding
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to the region in segmentation S that contains the pixel pi, the local refinement error is

defined in Eq. 1.5.

E(S1, S2, pi) =
|R(S1, pi)\R(S2, pi)|

|R(S1, pi)|
. (1.5)

where R(S1, pi)\R(S2, pi) = {p ∈ R(S1, pi)|p /∈ R(S2, pi)}. Note that this local refine-

ment error is not symmetric E(S1, S2, pi) ̸= E(S2, S1, pi). It encodes the error in one

direction only. In order to force all the local refinements to be in the same direction,

the Global Consistency Error es computed with Eq. 1.6,

GCE(S1, S2) =
1

n
min

[

∑

i

E(S1, S2, pi),
∑

i

E(S2, S1, pi)

]

, (1.6)

where n is the number of pixels in the image.

1.3.4 The Probabilistic Rand-Index (PRI)

The PRI [132] counts the number of pairs of pixels whose labels are consistent both,

for the ground truth and for the segmentation result. Consider a set of manual seg-

mentations (ground-truth) {S1, S2, . . . , Sk} of an image X = {x1, . . . , xN} consisting of

N pixels. Let Stest be the segmentation that is to be compared with the ground truth.

The label of the point xi in Stest is denoted by lStest

i and in the manually segmented

image Sk it is denoted by lki .

In order to model the label relationships for each pixel pair, the underlying distribu-

tion is estimated. This may be visualized as the scenario where each human segmenter

provides information about the segmentation Sk of the image in the form of binary

numbers I
(

lSk

i = lSk

j

)

for each pair of pixels (xi, xj). The set of all perceptually correct

segmentations defines a Bernoulli distribution, giving a random variable with expected

value denoted pij . Hence, the set {pij} for all unordered pairs (i, j) defines a generative

model of correct segmentations for a given image. In [132], the authors propose the

choice of estimator for pij , as the mean of the corresponding Bernoulli distribution as
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given by:

pij =
1

K

∑

k

I(lSk

i = lSk

j ). (1.7)

The PRI is finally defined as:

PR(Stest, {Sk}) =
1

(N
2

)

∑

i,j;i<j

[cijpij + (1− cij)(1− pij)] , (1.8)

where cij denotes the event of a pair of pixels i and j having the same label in the test

image Stest:

cij = I
(

lStest

i = lStest

j

)

(1.9)

This measure takes values in [0, 1], where 0 means that the Stest and {S1, S2, . . . , Sk}

have no similarities, and a PRI value of 1 means that all segmentations are identical.

This measure is considered as the most important in our evaluation framework because,

as it is pointed out by Yang [138], there is a good correlation between the PRI and the

human perception through the hand-labeled segmentations.

1.4 Computational intelligence in image segmentation tasks

Real-world problems are ill-defined, they are difficult to model and usually require

large-scale solution spaces. Computational intelligence (CI) is a set of methodolo-

gies to address the design of intelligent systems which, in contrast to classical hard

computing techniques, are tolerant to imprecision, uncertainty, partial truth, and ap-

proximation [80]. Such methodologies were developed in order to achieve tractability,

robustness, and low-cost solutions. The guiding principle is to devise methods that lead

to an acceptable solution at a low cost, by seeking for an approximate solution to an

imprecisely formulated problem.
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CI is, in general, the symbiotic use of many emerging computing disciplines. CI

primarily includes Artificial Neural Networks, Evolutionary Computation, Fuzzy Logic

and Rough sets. All these techniques have been successfully employed for various image

processing tasks including image segmentation, enhancement and classification, both

individually or in combination with other CI techniques. Given the importance of the

rough sets in this study, their background, definition and more details will be presented

in the next chapter. The remaining methodologies are introduced in the following

subsections.

1.4.1 Fuzzy Logic

Fuzzy logic, firstly introduced by Zadeh [140], provides a language with syntax and

local semantics, in which we can perform the qualitative knowledge of a human expert

about the problem to be solved [115]. Through fuzzy sets, it is possible to represent

and process linguistic information. Fuzzy sets are inherently inclined to deal with

linguistic knowledge and produce more interpretable solutions. Fuzzy sets allow the

tolerance to ambiguity, uncertainty and imprecision, facilitating the development of

complex systems.

Fuzzy logic has been extensively used in many application fields due to its character-

istic advantages. Specifically in image segmentation tasks, fuzzy logic gives a mechanism

to represent the ambiguity within an image [115]. Fuzzy segmentation approaches in-

clude the use of fuzzy clustering with the fuzzy c-means algorithm [1, 68, 17, 124], fuzzy

rule-based approaches [57], measures of fuzziness [79], detection of moving objects [16],

among others.

1.4.2 Artificial Neural Networks

The Artificial Neural Networks (ANNs), first explored by Rosenbaltt [108], are com-

putational structures to learn patterns from examples. They have been useful in the

representation of non-linear phenomena between multiple variables. Using a training
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set that samples the relation between inputs and outputs, and a back-propagation al-

gorithm, ANNs give a supervised learning algorithm that performs local optimization.

The main contributions of ANNs in the field of image analysis include classification

and clustering. Examples of their application are, for example, the one proposed by

Ji and Park [55] that uses a Self Organization Map (SOM) in a watershed algorithm.

Other example is the one introduced by Ilea and Whelan [52], which uses a SOM for

color quantization. More examples may be consulted in [115].

1.4.3 Evolutionary Computation

The evolutionary computation comprises a set of bio-inspired methodologies, whose

main goal is the global optimization of functions. They can also be viewed as searching

algorithms, suitable in situations where the search space is large, because they explore

a space using heuristics inspired by nature. Any optimization problem has to be rep-

resented by an encoded representation of the variables in the space problem. In this

space, a population of candidate solutions is evaluated by a fitness function in terms of

the performance. The best candidates evolve and pass some of their characteristics to

their offsprings. The Genetic algorithms [51], particle swarm optimization [30] and the

ant colony optimization [28], are example algorithms of the evolutionary computation.

In general, the use of such methodologies is confined to the optimization of the

parameters of a segmentation method, by using a given measure of performance as a

fitness function. Examples of their application to image segmentation are surveyed in

[100].

1.5 Concluding remarks of the chapter

Image segmentation is one of the fundamental problems in computer vision. Its impor-

tance is based on its use as a pre-analysis of images in the development of high-level

tasks, where the performance largely depends on the accuracy and robustness of the
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segmentation step. Segmentation refers to the process of partitioning a digital image

into separate and homogeneous regions, using a feature homogeneity criterion and a

spatial connection norm.

A considerable number of approaches for image segmentation have been proposed.

Such methods have been categorized according to the human interaction, the type of

images they are used for and the number and type of features used in the homogeneity

criterion. In this chapter, we focused the literature review according to the features,

where the color, texture and the combination of these two are highlighted. It can be

remarked that the combination of color and texture features in the segmentation process

has shown to be strongly linked to the human perception.

Although image segmentation is one of the fundamental problems within computer

vision research, it still represents a challenging task due to the difficulty in the manage-

ment of different uncertainties in the images. In this regard, the use of computational

intelligence, specifically the use of rough sets is proposed in this thesis. Such tech-

niques, in contrast to classical hard computing techniques, are tolerant to imprecision,

uncertainty and partial truth.

In the following chapter, special attention is given to the formal definition of rough

sets in a general context and then, to their use in image analysis. Furthermore, the

specific use of rough set concepts for image segmentation tasks is also presented.
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Rough sets for image segmentation

The inherent presence of imprecision, uncertainty and partial truth when dealing with

image processing and analysis tasks is the reason of the growing interest for the use

of rough set-based techniques. Concepts present in image processing, e.g. regions,

edges, shapes, are not always precisely defined. Hence, any decision made at a par-

ticular processing level, will have an impact on all higher-level activities. Therefore,

rough set-based methods have been proposed for different image processing and anal-

ysis tasks, including classification, enhancing and segmentation. More details about

rough sets’ definition, their background theory and implementation for image analysis

and segmentation tasks are given in the following sections.

2.1 Rough sets definition

Rough set theory offers one of the most-recent approaches for modeling imperfect knowl-

edge. This theory has been proposed by Z. Pawlak [101] as an alternative to fuzzy sets’

theory and tolerance theory. In [101], Pawlak proposes approximate operations on sets,
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approximate equality of sets, and approximate inclusions of sets. Rough sets have many

important advantages for data mining, such as providing efficient algorithms for finding

hidden patterns in data, finding minimal sets of data, generating sets of decision rules,

and they offer a straightforward interpretation of results. The data can be acquired

from measurements or from human experts [62]. In the last two decades, rough sets

have been widely applied to data mining and rapidly established in many real-life ap-

plications such as medical diagnosis, control algorithm acquisition and process control

and image processing. The main advantage of rough set theory is that it needs no

a-priori knowledge or additional information about data, like, for instance, membership

functions in fuzzy set theory.

Rough set theory [101] has been proposed as a mathematical tool for handling un-

certainty. It offers powerful tools to extract hidden patterns from data, and therefore,

it is becoming very important in various application fields. This theory includes two

main parts: the knowledge description and the set approximation.

Intuitively, knowledge can be perceived as a body of information about some parts

of reality, which constitutes our domain of interest [102]. Knowledge is based on the

ability to classify objects, and an object it is meant to be anything we can think, i.e.,

real things, states, abstract concepts, processes, etc.

The basic concept for data representation in the rough set framework is an infor-

mation system, represented as a table, where each row represents an object and every

column represents an attribute. Formally, an information system I can be defined in

terms of a pair I = (U,A), where U is a non-empty finite set of objects and A is a

non-empty finite set of attributes. Each attribute a ∈ A can be viewed as a function

that maps elements of U into a set Va, a : U → Va. The set Va is called the value set of

attribute a.

A decision system (a decision table) expresses all the knowledge we have about the

model we are studying. This table may be unnecessarily large because indiscernible

objects may be represented several times, or some of the attributes may be superfluous.
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In order to detect such issues, the notion of equivalence is defined. A binary relation

R ⊆ U2, which is reflexive (xRx, ∀x ∈ U), symmetric (if xRy then yRx, ∀x, y ∈ U) and

transitive (if xRy and yRz then xRz, ∀x, y, z ∈ U), is called equivalence relation. The

equivalence relation of an element x ∈ U consists of all objects y ∈ U such that xRy.

Let I = (U,A) be the information system, then with any B ⊆ A there is associated

an equivalence relation INDA(B):

INDA(B) = {(x, x′) ∈ U2|∀a ∈ Ba(x) = a(x′)}. (2.1)

The equivalence relation INDI(B) is called B-indiscernibility relation. If (x, x′) ∈

INDI(B) means that x and x′ are indiscernible from each other by attributes from B.

The equivalence classes of the B-indiscernibility relation are denoted by [x]B.

An equivalence relation induces a partitioning of the universe. The subsets that

are most often of interest have the same value of the outcome attribute. In the rough

sets theory, equivalence relations are extended to classes, which are generalizations of

sets. Rough sets are interested in concepts which form a partition (classification) of the

universe U , in classes C = X1, X2, . . . Xn such that Xi ⊆ U , Xi ̸= ∅,Xi ∩ Xj = ∅ for

i ̸= j, i = 1, 2, . . . , n and
∪

Xi = U .

A rough set is an approximation of a vague concept by a pair of precise concepts.

Having an information system, it may happen that a specific concept cannot be defined

in a precise manner. It could be possible to delineate the objects that have a given

attribute with certainty, the objects that do not have such attribute and, finally, the

objects that belong to a boundary between such two cases. If this boundary is non-

empty, the set is rough.

If I = (U,A) is an information system, let B ⊆ A and X ⊆ U . We can approximate

X using the information contained in B by constructing a B − lower and B − upper

approximations of X. The set of all objects which can be classified with certainty as

members of X with respect to B is called the B-lower approximation of a set X, and is

denoted by
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B(X) = {x|[x]B ⊆ X}. (2.2)

The set of all objects which can be only classified as possible members of X with

respect to B, is called the B-upper approximation of a set X, denoted by

B(X) = {x|[x]B ∩X ̸= ∅}. (2.3)

The set of those objects that cannot be decisively classified into X on the basis of

knowledge in B is called the boundary region, and is denoted by

BNB(X) = B(X)−B(X) (2.4)

A set X is called crisp (exact) with respect to B if and only if the boundary region

BNB(X) is empty. A set X is called rough (inexact) with respect to R if and only if the

boundary region of X is nonempty. The lower approximation of a set is the union of all

granules which are entirely included in the set. The upper approximation of a set is the

union of all granules which have non-empty intersection with the set. The boundary

region of a set is the difference between the upper and the lower approximations. The

composition of a rough set is illustrated in Fig. 2.1.

In [101], Pawlak discusses two numerical characterizations of imprecision for a sub-

set X in the approximation space ⟨U,B⟩: accuracy and roughness. The accuracy of X,

which is denoted by αB(X), is the ratio of the number of objects in its lower approxi-

mation to that in its upper approximation, namely:

αB(X) =
|B(X)|

|B(X)|
(2.5)

The roughness of X, which is denoted by ρB(X), is defined as ρB(X) = 1−αB(X).

Note that the lower the roughness of a subset, the better is its approximation. Further-

more, the following properties are noted:

1. 0 ≤ ρB(X) ≤ 1
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Figure 2.1: Illustration of a rough set composition.

2. X = ∅ → B(X) = B(X) = ∅ → ρB(X) = 0

3. ρB(X) = 0 iff X is definable in ⟨U,B⟩

2.2 Rough sets in image analysis

As it has been mentioned, rough sets provide a wide spectrum of practical solutions

for image analysis problems such as image understanding, image classification, pattern

recognition, image retrieval, perceptual relations of images and image segmentation.

The pioneers in the use of rough sets for image analysis were A. Mrosek and L.

Plonka [90]. They stated that the essence of rough set-based approaches for image

analysis tasks consists in viewing an image as a universe of a certain information system

as a set of points (pixels). The features of the points are the source of knowledge. The

earliest approach in image analysis with rough sets is the work by Skowron [120] and

Bloch [5] for the approximation of mathematical morphology.

After the initial works, different authors have employed the rough sets for a vari-

ety of image analysis tasks. Rough set frameworks have been hybridized with other

computational intelligence technologies that include neural networks, particle swarm

optimization, support vector machines, and fuzzy sets. The most popular usage of
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rough sets has been in medical imaging [50]. However, they have been applied in solv-

ing different problems such as object extraction [99], image classification [49, 144, 125],

image retrieval [39] and image segmentation [116, 81].

Although image segmentation is one of the fundamental problems within computer

vision research, it still represents a challenging task due to the difficulty in the manage-

ment of different uncertainties in the images. As it has been mentioned in the literature

review, among the spatially-blind techniques, the histogram-based methods offer ad-

vantages over other spatially-blind and spatially-guided segmentation techniques. An

example of those advantages is that in the histogram-based methods, it is not required

a-priori information about the image, like the number of classes or their initialization.

However, the disadvantages of this approximation include the sensitivity to noise and

intensity variations, the difficulty to identify significant peaks in the histogram, and the

lack of representation of the spatial relationship between neighbor pixels.

As mentioned before, the lower approximation is a description of the universe of

objects that are included in the set with certainty, whereas the upper approximation

is the definition of the objects that possibly belong to the set. From this concept of

a rough set and in the context of image segmentation with histogram-based methods,

Mohabey and Ray [89] have developed the idea of the histon which can be considered

as the upper approximation of a rough set and the regular histogram is considered as

the lower approximation. The histon is an enhancement of the histogram, and it is a

representation that associates pixels which are similar in features and may belong to

one specific object in the image. The histon has the advantage of associating pixels

with alike colors within a spatial neighborhood, resulting in a method which is tolerant

of small variations of colors and noise. Additionally, the histon facilitates the selection

of significant peaks because they are heightened in comparison with the peaks in a

histogram.
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2.3 Rough set-based image segmentation

In order to set the histon definition in the context of a histogram-based segmentation

method, let I(m,n,C) be the pixel (m,n) of anM×N image I, wherem,n are the image

coordinates m ∈ [0,M − 1] and n ∈ [0, N − 1]. The parameter C denotes the feature

channels C = {c1, c2, ..., cj}, with 0 < i ≤ j of them used in the image representation.

In this study we have three information channels j = 3, each channel having Li possible

values. Therefore, I(m,n, ci) ∈ [0, Li − 1] is the pixel value for the component i of the

image at the coordinates (m,n).

The histogram of an image I is a representation of the frequency distribution of all

the intensities that occur in the image. The histogram of a given color channel i is

computed as in Eq. 2.6.

hi(g) =
M−1
∑

m=0

N−1
∑

n=0

δ(I(m,n, ci)− g) (2.6)

where δ(·) is the Dirac impulse and g is a given value 0 ≤ g ≤ Li − 1.

As previously mentioned, the histogram-based segmentation methods identify each

object in the image by a peak in the histogram, making the assumption that the features

on the surface of the objects are unvarying. Unfortunately, such an assumption is not

always true and variations in the features are commonly found, making the identification

of peaks a challenging task. Toward the solution of these uncertainties, the histon

associates pixels that are similar, and possibly belong to one specific object in the

image. Such association is not limited to feature similarity, it also includes the spatial

relationship of the pixels and their neighbors.

Regarding the histon definition as the upper approximation of a rough set, let us

consider the similarity between a reference pixel and its neighbors be the weighted

Euclidean distance d(m,n) defined in Eq. 2.7.
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d(m,n) =
∑

p,q∈W

√

∑

i∈C

ωi(I(m,n, ci)− I(p, q, ci))2 (2.7)

where I(m,n, ci) is the value of the reference pixel, I(p, q, ci) is the value of the (p, q)

neighbor within the analysis windowW and ωi is a weight added to tune the contribution

of each information channel.

The pixels that are similar to their neighbors are registered in an X(·) matrix (Eq.

2.8), where the similarity threshold is defined by a parameter named expanse and de-

noted by Ex,

X(m,n) =











1, d(m,n) < Ex.

0, otherwise.
(2.8)

The histonHi, where i is a given component in the representation space, is computed

as in Eq. 2.9,

Hi(g) =
M−1
∑

m=0

N−1
∑

n=0

(1 +X(m,n))δ(I(m,n, ci)− g), (2.9)

where δ(·) is the Dirac impulse and g is the pixel value, where 0 ≤ g ≤ Li − 1.

The histon, in analogy to the histogram, records the frequency of occurrence of

pixels that are similar to its neighbors. For each pixel that is related in features to its

neighbors, the corresponding bin g, in its channel i, is incremented twice. This double

increment in the histon results in the heightening of peaks, corresponding to locally

uniform intensities. The main advantage of using the histon instead of the regular

histogram is that the histon can capture the local similarity, resulting in a representation

tolerant of small variations, and furthermore, since the peaks are heightened, their

detection is easier.

In the rough-set theory, the lower and upper sets may be correlated using the concept

of roughness index. A further improvement to the histon, is the proposal by Mushrif

and Ray [91] (from now on referred to as RBM, for Roughness-Based Method), where
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both the histon and the histogram are correlated into a roughness index representation.

The roughness index is the granularity, or accuracy of an approximation set. In our

scope, the roughness index, for each g value, is defined as shown in Eq. 2.10.

ρi(g) = 1−
|hi(g)|

|Hi(g)|
, (2.10)

where i is the feature channel, h(·) is the regular histogram, H(·) is the histon. The

value of roughness is close to 1 if the number of registers of a given bin in the histon

is large in comparison to the registers of the same bin in the histogram. This situation

occurs if the features on a certain region are homogeneous. The roughness tends to

be close to 0 if there is a small similarity and a high variability in the region, because

the histon and the histogram have the same values. The dilatation or contraction of

such a boundary region between the histon and the histogram are influenced by the

parameters W and Ex. When the similarity tolerance Ex is too big, the association

of regions becomes more flexible, possibly leading to under-segmentation. When Ex is

small, the association becomes more rigid, making possible that even pixels with a high

similarity will be considered as different regions, resulting in an over-segmentation.

To achieve good segmentation results using rough set-based methods, the selection

of peaks and thresholds from the roughness index is very important. In the methods

proposed by Mushrif [91] [92], the selection of peaks is carried out on the roughness index

for each color component in the RGB color space. The criteria used for the selection of

the significant peaks is based on two rules, empirically determined. The first criterion

establishes a specific height, and the other defines a minimum distance between two

peaks. The height of a significant peak must be above the 20% of the average value of

the roughness index for all the pixel intensities, and the distance between two significant

peaks has to be higher than 10 units.

Although the roughness index-based method provides interesting segmentation re-

sults, one has to be aware that although those fixed criteria for the threshold selection

are easy to follow, they might not be appropriate for different images. Therefore, since
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the thresholds are dependent on the image content, it is desirable to use adaptive cri-

teria, in the selection of the optimal thresholds.

2.4 Concluding remarks of the chapter

In this chapter, the definition of rough sets and the use of this concept for the image

segmentation problem has been presented. Special attention has been established to

the roughness index-based segmentation approach named as RBM. This methodology

provides some advantages over other approximations, since it does not require a priori

information about the image under analysis, like the number of classes or their initial-

ization. Moreover, this method has the advantage of associating pixels with similar

colors within a spatial neighborhood, resulting in a method which is tolerant of small

variations of colors and noise. However, as it has been pointed out, the selection of

thresholds might not be adequate for different images, and adaptive criteria must be

used.

In the next chapter, a set of improvements to the algorithm proposed by Mushrif [91]

are introduced, and this new approach is evaluated in comparison with other related

techniques and standard segmentation methods.
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CHAPTER 3

Improving a rough set-based

segmentation approach for color images

In this chapter, we propose a color image segmentation approach based on the rough

set theory. The contribution of the proposed approach in comparison with the previ-

ous rough set-based approaches is threefold. First, a study is accomplished in order to

determine the best-suited color representation for the segmentation approach. Second,

with an adaptive threshold selection, the approach is automatically adjustable accord-

ing to the image content. Third, concerning over-segmentation, the use of a region

merging process, which takes into account the features and the spatial relations of the

resulting segments, is proposed. These three strategies help our method to overcome

some performance issues shown by previous rough set theory-based approaches.

This chapter is divided in three sections. In Section 3.1, the modifications and adap-

tations performed in order to improve the rough set-based segmentation approach are

described. In Section 3.2, the experiments and results are given, followed by concluding

remarks in Section 3.3.
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3.1 Improving a rough set theory based segmentation ap-

proach

The method proposed in this chapter lead to the segmentation approach illustrated in

Fig. 3.1. From now on, this method is referred as PRM, for Perceptual Roughness

index-based Method.

At the beginning of the PRM, a color space transformation is applied to the input

image. Then, the rough set theory-based approach with a multithreshold method and an

adaptive peak selection is performed on each component of the transformed image. The

main improvement is the adaptive peak selection, where the criteria used for choosing

the significant peaks change according to the image content. At the end, the segmented

image is obtained after a region merging process, which takes into account both feature

similarity and spatial relationship. Each block of the Fig. 3.1 is described in the following

subsections.

3.1.1 Definition of the color spaces under analysis and color space

transformations

A color space is an abstract representation which describes colors as tuples of numbers,

typically as three values or color components [31]. A color space is a coordinate system,

where each color is represented by one point in the space.

In the context of image segmentation, it is known that the use of a given color

representation has a relevant impact on the performance of a segmentation method [6].

In this regard, we explore the use of different color spaces and their impact on the

performance of our method. We have mainly explored the use of the perceptual color

spaces (CIELab and CIELuv) and the RGB space. In this subsection, we describe the

required transformations to take an image from the RGB color space to the perceptual

color spaces explored in this study.

The RGB color space is an additive color space based on the RGB color model. The
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Figure 3.1: The general process of the proposed segmentation approach.
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main purpose of the RGB space is the sensing, representation and display of images in

electronic systems, such as televisions and computers, though it has also been widely

used in conventional photography. A particular RGB color space is defined by the

three chromaticities of the red, green, and blue additive primaries. In this space, each

color component can take values in a normalized range [0, 1] or in a discrete range

[0, L−1], where L = 2nb and nb represents the number of bits used in the discretization

process. Usually, nb = 8 and therefore, there are L = 256 possible values in each color

component.

Given that the perceptual color spaces, CIELab and CIELuv, transformations are

applied to the CIEXYZ space, the transformation from RGB to CIEXYZ space must

be reviewed. The color representation CIE 1931 XYZ, best known as CIEXYZ, is

one of the first color spaces obtained from a mathematical model of the human color

perception. It was developed by the Commission Internationale de l’Èclairage (CIE),

back in 1931 [121]. The transformation equation is presented in Eq. 3.1,













X

Y

Z










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
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






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


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











r
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b













, (3.1)

where rgb ∈ [0, 1] are the normalized values computed by {r, g, b} = 1
L−1

{R,G,B}, for

an image with L possible values.

The CIE 1976 (L*, a*, b*) color space, better known as CIELab, is a space de-

rived from the CIEXYZ color space. The transformation equations to obtain the Lab

components are defined from Eq. 3.2 to Eq. 3.5,

f(t) =











t1/3, t > α3,

t/(3α2) + 16/116 t ≤ α3.
(3.2)

L = 116f(Y/Yn)− 16, (3.3)

a = 500[f(X/Xn)− f(Y/Yn)], (3.4)
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b = 200[f(Y/Yn)− f(Z/Zn)], (3.5)

where α = 6/29, and (Xn, Yn, Zn) is the white point for the scene in CIEXYZ. In this

work we have used the standard for a daylight illuminant D65, where Xn = 0.9504,

Yn = 1.000 and Zn = 1.0887.

In the same manner as the CIELab color space, the CIELuv was developed by the

CIE in order to obtain a perceptually linear space. The transformation equations from

the CIEXYZ space to CIELuv are defined in Eqs. 3.6 to 3.10.

u′ =
4X

X + 15Y + 3Z
, (3.6)

v′ =
9Y

X + 15Y + 3Z
, (3.7)

L = 116(Y/Yn)
1/3 − 16, (3.8)

u = 13L(u′ − u′n), (3.9)

v = 13L(v′ − v′n), (3.10)

where Yn is the Y component of the reference white in CIEXYZ and u′n and v′n are the

chromaticity coordinates of the reference white. The inverse transformations of these

color spaces are not required because in our study, there is no need to return to the

RGB color representation.

The adaptation of the PRM procedure to use perceptual color spaces is simple. The

input image is in the RGB color space with Li = 256 possible values in each channel i,

0 ≤ g ≤ 255. Once the whole image has been transformed to a given color space, each

component is fitted to the range of [0, 255] by a linear dynamic range expansion of the

image.

3.1.2 Roughness index-based segmentation

Posterior to the transformation and adjustment of the color space, the second issue

to address is the peak and threshold selection procedure in the roughness index rep-
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Figure 3.2: Internal steps of the proposed rough-set-based segmentation.

resentation. In the Mushrif and Ray method [91] (referred to as RBM), the selection

of peaks is accomplished by following a succession of fixed criteria. Therefore, there is

no guarantee that the best peaks are found for all types of images. In this regard, the

selection of the thresholds must be adaptive, in such a way that different height and

distance criteria are used for distinct images.

The main steps of the rough-set-based segmentation approach are shown in Fig. 3.2.

First, the histogram h(g), the histon H(g) and the roughness index array ρ(g) are com-

puted of each image channel ci. After that, the array ρ(g) is filtered in order to diminish

small variations. The adaptive selection of the significant peaks in the roughness index

is performed and, finally, a multithreshold segmentation is accomplished. More details

are given in the following paragraphs.

Concerning the reduction of small variations in the roughness index array ρ(g), we

have tested both linear and non-linear filters such as averaging filters and rank filters

with different window sizes. We have found that the linear filter shown in Eq. 3.11 offers

the best results in our segmentation process.

ρ′i(g) =
ρi(g − 2) + ρi(g − 1) + ρi(g) + ρi(g + 1) + ρi(g + 2)

5
. (3.11)

In the histogram-based methods, the valley points represent the object boundaries

and the region between the two valley points denotes the object region. Therefore,

in the third step of our method, we determine the relevant peaks and valleys of the
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roughness index, and get the feature values of the objects in the image. The selection of

the significant peaks is important for achieving good segmentation results. The criteria

used for their selection are based on the height of the peaks and the distance between

two significant peaks. The criteria are: (a) The peak is significant if the height of the

peak is greater than Th and (b) the peak is significant if its distance to the previous

peak is greater than Td.

The computation of the criteria thresholds, Th and Td, is accomplished adaptively

for each image and for each of its channels. First, the set of all local maxima P =

{p1, p2, . . . , pj , . . . , pk} is obtained from the filtered roughness index ρ′(g). The rough-

ness index is considered to have a local maximum pj on g if ρ′(g) ≥ ρ′(g − 1) and

ρ′(g) ≥ ρ′(g + 1)}. After the identification of the k local maxima, the mean and the

standard deviation of their corresponding heights (µh, σh) and distances (µd, σd) are

computed as in Eqs. 3.12 and 3.13.

µh =
1

k

k
∑

j=1

ρ′(pi), σh =

√

√

√

√

√

1

k

k
∑

j=1

[ρ′(pj)− µh]2 (3.12)

µd =
1

k − 1

k
∑

j=2

(pj − pj−1), σd =

√

√

√

√

√

1

k − 1

k
∑

j=2

[(pj − pj−1)− µd]
2 (3.13)

The set of n significant peaks contains the intensity levels g whose roughness value

is above the height threshold Th = µh−σh and that also have a distance to the previous

peak greater than Td = µd − σd.

After the set of n significant peaks is computed, the multithresholding process is

performed. The thresholds T = {T1, T2, . . . , Tn−1} are localized on the valleys (the

minima values) found between two significant peaks. The pre-segmented component

Si is obtained by assigning a label to every pixel with intensity under a threshold T

(See Eq. 3.14). In Fig. 3.1.2 the process to determine the best thresholds is summa-

rized. After the roughness index is filtered (Fig. 3.1.2(a)), the set of all local maxima
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are obtained (Fig. 3.1.2(b)). The significant peaks are selected by using the criteria

established (Fig. 3.1.2(c)) and the thresholds are found on the minimum value between

two significant peaks (Fig. 3.1.2(d)).

Si(m,n) =



















































l1, I(m,n, ci) < T1,

l2, T1 ≥ I(m,n, ci) < T2,
...

ln−1, Tn−2 ≥ I(m,n, ci) < Tn−1,

ln, I(m,n, ci) ≥ Tn−1.

(3.14)

When all the pre-segmented components Si, i = {L, a, b} are computed, we obtain

the final pre-segmented image S by finding the union of the three components S =

SL∪Sa∪Sb. In Fig. 3.1.2, an example of the pre-segmented image obtention is presented.

3.1.3 Region merging

The final step in the PRM segmentation framework is the reduction of possible over-

segmentation issues with a region merging process. The image obtained with the union

of the three pre-segmented image components often results into an over-segmented im-

age. Therefore, the final segmented image is obtained by applying a region merging

algorithm. This process fuses small regions with the most appropriate neighbor seg-

ments. The fusion criteria for the merging step vary from method to method. Usually,

the region merging is based on both, features and the spatial relation between pixels

simultaneously. Nonetheless, some methods [91, 92, 15] only consider feature similarity

to decide if two regions are to be fused, ignoring the spatial relationship of the different

segments.

In our method, the region merging step takes into account both, color similarity and

spatial relationship between regions. The strategy, firstly identifies the small regions

whose number of pixels is less than a given threshold. From the experiments, we have

found that a good minimum number of pixels in a given region to be considered as small
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(a) (b)

(c) (d)

Figure 3.3: Process to determine the best thresholds for an image. (a) Filter the
roughness index. (b) Obtain the set of all the local maxima in the array. (c) Select
the significant peaks by using the criteria established. (d) Set the thresholds on the
minimum value between two significant peaks.
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(a) SL (b) Sa (c) Sb

(d) S = SL ∪ Sa ∪ Sb

Figure 3.4: An example of the segmented image channels and their union into the
pre-segmented image.
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Figure 3.5: Initial regions (left) and the final segmentation map after the region merging
process (right) using the two criteria of feature similarity and spatial connectivity.

is 0.2% of the whole image size. Once we have identified all the small regions, they are

fused with the most appropriate neighbor region. Such region is the one that minimizes

the distance between the mean values of the regions and maximizes the number of

connected pixels between those two regions. In our approach, we have used the 4-

connectivity. Hence, a small region is merged with the neighbor who is more similar

in features and has more connected pixels. In case of conflict, the feature similarity is

privileged. The process is illustrated in Fig. 3.5.

In Fig. 3.6, an example of the merging process effect is presented. In Fig. 3.6(a)

the result of the rough set-based segmentation it is shown, before the submission to the

merging process. In this image, the borders of the detected segments are overlaid to the

original image and we can observe that many small regions are present. The Fig. 3.6(b)

shows the resulting image after the merging process, where the over-segmentation issues

are significantly reduced.

3.2 Experiments and Results

In this section, we present experiments on natural scene images, in order to evaluate:

(1) The performance of our proposal using different color spaces and (2) the performance
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(a) (b)

Figure 3.6: Resulting images (a) before and (b) after the region merging process.

of the proposed method in comparison with other state-of-the-art approaches.

In these experiments, the Berkeley Segmentation Data Set and Benchmarks [83] is

used. As it was established in Chapter 1, this data set is a well-known empirical basis

for the evaluation of segmentation algorithms. The performance of our segmentation

method is quantitatively evaluated adopting the three metrics introduced in Chapter

1: the Probabilistic Rand-Index (PRI) [132], the Global Consistency Error (GCE) [83]

and the Boundary Displacement Error (BDE) [34].

3.2.1 Parameter tuning

Before presenting the comparison in different color spaces, let us remark that the rough-

set-based segmentation methods depend on two parameters (W,Ex), the size of the

window W and the expanse Ex. Ex is the similarity tolerance threshold and W is

the size of the neighborhood analyzed. Hence, it is important to estimate the best
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parameters to be used for each color space. In the previously proposed RBM, that uses

the RGB color space, the best couple of parameters proposed by the authors is (3,100).

By contrast, as the perceptual color spaces have different shapes in comparison with

the RGB color space, we must estimate the best parameters for them.

The combination of parameters is evaluated using the 300 images taken from the

BSD and quantitatively assessed with the PRI measure. We have exhaustively searched

for the best window size W in the set {3, 5, 7, 9, 11} and the expanse Ex in the set of

{50, 100, 150, . . . , 400}. We have found that the best parameters for the RGB space

using our method are (5, 150). In the case of the CIELab space the best set is (7, 150).

Using the CIELuv color space, the best parameters found are (5, 300).

3.2.2 Performance evaluation in different color spaces

A quantitative comparison of the use of different color spaces in the PRM is accom-

plished. The corresponding PRMRGB, PRMLab and PRMLuv are implementations of

our PRM that employs RGB, CIELab and CIELuv color spaces respectively, using

their best parameter set. In Figs. 3.7, 3.8 and 3.9, the plots corresponding to the PRI,

GCE and BDE measures are provided for each test image. The PRI values are plotted

in increasing order, while for the GCE and BDE, the values are plotted in decreasing

order. Hence, a given index in the horizontal axis may not represent the same im-

age across the algorithms. In this way we can evaluate the quality tendencies of each

method and compare them. As we can see from these figures, the curves related to the

use of perceptual color spaces are consistently better than the curve representing the

RGB space. This means that the PRMLab and PRMLuv curves are over the PRMRGB

curve for the PRI and below it for the GCE and BDE measures. It is observed that

both PRMLab and PRMLuv curves are very close from each other and from a visual

inspection, it is hard to determine which space is the most appropriate for our method.

In this case, the mean results aim to a much clearer distinction in this evaluation.
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Figure 3.7: Comparison of the PRI results of our approach in the three color spaces
RGB, CIELab and CIELuv. A higher PRI value is desirable.

Figure 3.8: Comparison of the GCE results of our approach in the three color spaces
RGB, CIELab and CIELuv. A low GCE value is desirable.
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Figure 3.9: Comparison of the BDE results of our approach in the three color spaces
RGB, CIELab and CIELuv. A low BDE value is desirable.

The average PRI, GCE and BDE results for each color space with the 300 images

are detailed in Table 3.1, where the best result for each measure is highlighted with

a bold typeface. In this table, the higher PRI average is achieved by PRMLab with

a value of 0.760. The use of the CIELuv space is slightly behind with 0.752 and the

PRM in RGB gets the lower value of 0.737. The standard deviation and the number of

images with a PRI value higher than 0.7 are also presented. The value of 0.7 is taken

because it is empirically considered that images which obtain that PRI value, or above

of it, are good segmentations. In the same manner, the best results are obtained with

the PRMLab, with the lowest standard deviation and the higher number of images with

PRI scores above 0.7. For the GCE and BDE averages, the best results are achieved by

PRMLuv with 0.203 and 11.42 respectively, while the PRMLab is slightly behind with

0.212 and 11.59 in average, for these error measures.

Qualitative examples of the segmentation results using PRM are shown in Fig. 3.10.

In each row, the original image and the corresponding outcome for each color space are

43



CHAPTER 3. IMPROVING A ROUGH SET-BASED SEGMENTATION
APPROACH FOR COLOR IMAGES

Table 3.1: Average performance and comparison in three color spaces using the 300
images in the BSD.

PRMRGB PRMLuv PRMLab

PRI 0.737 0.752 0.760

Std. Dev PRI 0.133 0.133 0.126

PRI > 0.7 (# Images) 210 219 226

GCE 0.245 0.203 0.213
BDE 11.74 11.42 11.59

visually compared. The original image is shown in the first row, while the resulting

segmentation of the PRM using the RGB space is shown in the second row. The

corresponding segmentations of the PRMLuv and PRMLab are shown in the third and

fourth rows, respectively. From this qualitative comparison, we can observe that the

resulting segmentations of the perceptual spaces outperform the results using the RGB

color representation. It can be seen that, in these examples, the outputs from the

PRMRGB show a clear over-segmentation, and the PRMLuv and PRMLab succeed in

associating regions with similar colors.

3.2.3 Performance comparison with other methods

After the study of the PRM in different color spaces, a comparison of our approach

against other segmentation methods based on rough set theory, has been conducted. The

comparison is carried out with the Roughness index-based technique (RBM) [91] and the

Roughness approach through Smoothing Local Difference (referred to as RSLD) [139].

The RSLD method is of special interest since it is a roughness-based method performed

on the perceptual color space CIELuv. The results for the Normalized cuts method

(NCuts) [118] and the Mean Shift segmentation approach [20] are also included. The

NCuts and Mean Shift methods are considered in this comparison because of their influ-

ence as widely-used methods in image segmentation tasks. Besides, they are considered

as de facto standard references for evaluation purposes. It is important to mention that
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Figure 3.10: Qualitative comparison of three samples (first row) out of 300 images from
the BSD in the different color spaces under analysis (RGB in the second row, CIELuv
and CIELab in the third and fourth row, respectively).
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Figure 3.11: Comparison of the PRI results of our method PRMLab with other rough
set-based methods (RBM and RSLD) and reference methods (NCuts and Mean Shift),
using the 300 test images from the BSD. A higher PRI value is desirable.

the outcomes of the RBM, and the RSLD methods were obtained with our implemen-

tation of the algorithms described by the authors.

The corresponding results for the 300 test images in the BSD are obtained and

compared. In Figs. 3.11, 3.12 and 3.13, the PRI, GCE and BDE values, respectively,

are plotted. We can observe from Fig. 3.11, that the PRMLab consistently outperforms

the rest of the methods. It is interesting to notice that the NCuts curve in this figure

records higher PRI values than the Mean Shift, RBM and RSLD methods for the first

90 images, keeping its dominance over the Mean Shift until image number 160 and over

the RSLD method until the image 240. Nevertheless, its PRI evaluation drops from

there on. The reason of this trend is the low variability in the NCuts method.

In the case of Fig. 3.12, the curve with the lowest values is the one representing

the Mean Shift approach, followed by our PRM. The curves with the highest errors are

the curves of NCuts and RBM. It is difficult to make a visual separation of methods
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Figure 3.12: Comparison of the GCE results of the PRMLab with RBM and RSLD and
the reference methods NCuts and Mean Shift using the 300 test images from the BSD.
A lower GCE value is desirable.

in Fig. 3.13, since the PRMLab, NCuts, RBM and RSLD curves are very close. The

corresponding curve of the Mean Shift method in the BDE measure is the only one that

stands out the rest of the curves, having the highest error values.

The average PRI, GCE and BDE results for all the methods, using the 300 images

from BSD, are displayed in Table 3.2. From this table, we can see that the highest

average value of 0.760 is achieved by PRMLab, followed by the RBM with an average of

0.743. The lowest PRI average is obtained with the RSLD method with 0.620. In this

table, again, our method obtains more images with PRI values higher than 0.7. In this

case, the approximation with the lowest standard deviation, is the NCuts method with

0.119. However, our approximation is the second more precise method with a standard

deviation of 0.133. In the case of GCE, the lowest error is attained by the Mean Shift

method, and for the BDE, the PRMLab gets the lowest error of 11.59.
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Figure 3.13: Comparison of the GCE results of the PRMLab with RBM and RSLD and
the reference methods NCuts and Mean Shift using the 300 test images from the BSD.
A lower GCE value is desirable.

Table 3.2: Average performance and comparison with other methods using the 300
training images in the BSD.

PRMLab RBM RSLD Mean Shift NCuts

PRI 0.760 0.743 0.620 0.649 0.722
Std. Dev PRI 0.126 0.135 0.176 0.205 0.119

PRI > 0.7 (# Images) 226 180 114 160 200

GCE 0.213 0.302 0.230 0.154 0.298
BDE 11.59 15.75 15.18 19.68 14.05
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3.3 Concluding remarks of the chapter

In this chapter, a set of modifications were proposed in order to improve a rough-set-

based segmentation method. Such technique, in contrast to classical hard computing

techniques, are tolerant to imprecision, uncertainty and partial truth, typical character-

istics of natural images. The proposed improvements are basically three. First, the use

of perceptually uniform color spaces instead of the RGB color representation was eval-

uated. We have found that the CIELab color space is the most suited representation

for our specific segmentation method, meanwhile the CIELuv space has a performance

only slightly inferior. The use of a perceptual color representation allows our system

improve the association of similar colors. The second proposal is an adaptive selection

of thresholds, which permits to select the most suitable thresholds for a given image.

The third modification is the use of a region merging process, which includes constraints

about the spatial relation and color similarity, diminishing over-segmentation problems.

The results obtained by our method show that this approach has the best segmenta-

tion performance with high consistency and low error. In general, it is observed that

the use of the proposed significant peaks selection, jointly with the merging strategy

and the use of perceptual color spaces, improves the segmentation results with respect

to the original proposal RBM. Moreover, the presented modifications allow better re-

sults in comparison with other classic segmentation methods in terms of three different

quantitative measures.

According to these experiments we may highlight that the rough-set-based segmen-

tation method has not been fully explored, especially in the use of features different

than the RGB color space. In this regard, the second part of this dissertation propose

the collaborative inclusion of texture features and perceptual color spaces in a rough

set-based segmentation method. Previous to the presentation of this methodology, in

the next chapter we present an overview of the methods for texture extraction and

texture representation.
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Introduction

In many computer vision and image processing algorithms, simplifying assumptions are

made about the homogeneity of intensities in local neighborhoods within an image.

However, natural images often do not show uniform intensities and exhibit visual tex-

ture, making difficult the analysis of such images. Considering that the texture is an

inherent property of all objects, its study is highly relevant for any computer vision

system. Many common low level algorithms, such as edge detection, break down when

applied to images that contain textured surfaces. It is therefore, crucial to develop

robust and efficient methods for processing images with textured regions.

In this part of the dissertation, the addition of texture features to the rough set-

based segmentation approach is proposed. Hence, a comprehensive review of the texture

analysis is first presented in Chapter 4. Additionally, the fundamental problems of

texture analysis, like classification, synthesis and segmentation of texture, are reviewed.

The importance of this texture analysis review is based on that texture is the second

major component of the proposed segmentation framework proposed in Chapter 5 and

it is used to complement the color features. In this chapter, details about the integration

of color and texture cues in the rough set-based segmentation approach, are presented.

It must be mentioned that in parallel to the image segmentation research, we have

conducted intensive work in texture analysis. The work developed in this field is pre-

sented in this chapter, and it comprises:
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• A texture classification approach using a fuzzy rule-based system (Section 4.3.1).

• A dynamic texture synthesis method using local spatiotemporal patterns (Sec-

tion 4.3.2).

• A method to estimate the fundamental pattern of periodic and near-periodic tex-

tures with potential applications in defect detection and texture synthesis (Sec-

tion 4.3.3).
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Overview of texture features extraction

and texture analysis

Texture analysis is an important research area in computer vision and image process-

ing. Visual texture is a perceived property on the surface of all objects and it is an

significant reference for their characterization and discrimination. However, a success-

ful application of texture analysis is complicated due to the irregularity of textures in

the real world: they are not uniform and the visual appearance may change in terms

of the orientation, scale, contrast, etc. These variations result in severe difficulties in

finding an adequate texture representation.

Although the concept is intuitively clear, there is no formal definition for visual

texture. Nonetheless, efforts have been made to propose definitions from different points

of view:

• Tamura et al. [123] point out that we may regard texture as what constitutes a

macroscopic region.
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• Rosenfeld [109] states that texture structure is simply attributed to the repetitive

patterns in which elements or primitives are arranged according to a “placement

rule”.

• Aribot [4] mentions that texture is a spatial concept that indicates, apart from

color and gray level, visual homogeneity characteristics in a given neighborhood

within the image.

• Sklansky [119] establishes that “a region in an image has a constant texture if a

set of local statistics or other local properties of the picture function are constant,

slowly varying, or approximately periodic.”

These definitions involve fundamental aspects of the definition of visual texture

analysis: the structural and the statistical analysis. From the structural point of view,

it is widely accepted to define the texture as a conjunction of two components: i) a

texture element (texel), which is the central microstructure in the image [143], and

ii) a set of rules for texel placement into the field of view. The statistical approaches

study the spatial distribution of gray values by estimating a set of statistics from the

distributions of local features. The statistical analysis is appropriate for fine textures,

while the structural may be considered for the coarse ones.

In general, visual texture has a number of qualitative attributes that have to be

taken into account, in order to achieve a successful texture analysis.

• Texture is a region property. The texture of a point is undefined. Its definition

must involve a spatial neighborhood.

• Texture is represented by the spatial distribution of gray levels.

• Texture in an image may be perceived at different scales.

• A region is perceived to have texture when the number of primitive elements in

the region is large.
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There is a number of perceived qualities, which play an important role in describing

a visual texture. According to Laws [65], those qualitative characteristics may be uni-

formity, density, coarseness, roughness, regularity, linearity, directionality, frequency,

and phase. In the same manner, Tamura et al. [123] describe the features that humans

associate to the visual texture and besides, they are possible to approximate computa-

tionally. Such features are coarseness, contrast, directionality, line-likeness, regularity

and roughness. Therefore, a texture may be considered as: coarse, fine, regular, irreg-

ular, directional, nondirectional, rough, smooth, etc.

Since the perception of texture has so many different dimensions, there is no single

method of texture representation adequate for a great variety of textures [130]. It is

observed that one approximation cannot be used for all existing textures. Sanchez-

Yanez et al. [111] mention that any texture may contain both structural and statistical

features, so it is desirable that a system may be able to deal with any situation [129].

4.1 Extraction of texture features

Defining texture is a difficult task. However, several methods have been proposed to

describe the visual texture in a quantitative way. Considering that it is impossible to

represent a texture as an array of all the pixels that compose it and their possible values,

different feature extraction methodologies have been proposed. A number of authors

have put their efforts to categorize such texture features extraction methods. A first

proposal was introduced by Van Gool et al. [135], where the methods were grouped

into statistical and structural methods. According to Tuceryan and Jain [130], the cat-

egorization may be extended into four major groups: geometrical, model-based, signal

processing and statistical. This last categorization has been under polemics because

there are methods that present properties from more than one category. Nevertheless,

this categorization is the most accepted in the computer vision community.
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Figure 4.1: Types of textures arranged by texture regularity [69].

Geometrical methods

The methods that fall under the category of geometrical methods is characterized by

their definition of texture as being composed of “texture elements” or texels. The

method of analysis usually depends upon the geometric properties of such texture ele-

ments. The goal of these methods is to describe a texture with simple primitives, even

if it is composed by complex structures. Geometrical methods are related to texture

regularity, which ranges in a spectrum from periodic to stochastic. We view textures as

a continuous spectrum where texture regularity varies gradually [69] (See Fig. 4.1).

On the one hand, regular textures are periodic patterns where the color and shape

of all texels are repeating in equal intervals along two linearly independent directions.

On the other hand, stochastic textures are considered as noisy. Different intensities are

randomly scattered over the image, barely specified by the attributes of minimum and

maximum brightness and average color. Textures observed on usually fall somewhere

in-between these two extremes, emerging other categories like the group of near-regular

textures. The near-regular group, comprises textures formed by texels that are not

strictly identical, and can be observed on man-made and natural surfaces, e.g. textiles,

floors, wallpapers, honeycombs. The irregularity observed in near-periodic textures can

be caused by various statistical deviations along different dimensions [70], e.g. symme-
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try, shape, noise, intensity and geometrical distortions.

Model-based methods

Model-based methods consist in creating a mathematical model able to describe the

texture. The importance of such a model is not only based on its use for feature

representation, but in its application in problems like texture synthesis. The model

parameters capture the essential perceived qualities of texture.

One of the most important model-based methods is the Markov Random Fields.

These models are able to capture the local information in an image assuming that the

intensity of each pixel depends on the intensities of its neighbors. MRF models have been

applied to various image processing applications such as texture synthesis [22], texture

classification [9, 59], image segmentation [19, 126], image restoration [38] among others.

Signal processing methods

The signal processing methods are approaches based on some frequency analysis algo-

rithm. These methods, are also called filtering approaches due to their application of a

linear transform or a filter bank, followed by an energy measure.

Some of the most popular methods for texture analysis are the spatial domain fil-

ters [41, 103], the Fourier transform [8] and the use of Gabor filters [131, 18]. The use

of spatial domain filters is the most direct way to capture image texture properties.

Such methods define different kinds of textures by measuring the edge density per unit

area. The Fourier domain filtering is the most popular method for frequency analysis

of texture. As the psychophysical results indicated, the human visual system analyzes

the textured images by decomposing the image into its frequency and orientation com-

ponents [8].
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Statistical methods

As it was aforementioned, texture may be regarded as the spatial distribution of gray

values. Therefore, the use of statistical features is one of the pioneers and most-used

methods in computer vision literature.

There is a considerable number of statistical methods for texture feature’s extraction.

Depending on the number of pixels defining the local feature, statistical methods can

be further classified into first-order (one pixel), second-order (two pixels) and higher-

order (three or more pixels) statistics. The basic difference is that first-order statistics

estimate properties (e.g. average and variance) of individual pixel values, ignoring the

spatial interaction between image pixels, whereas second- and higher-order statistics

estimate properties of two or more pixel values occurring at specific locations relative

to each other.

First-order texture measures are statistics calculated from the original image values

and do not consider pixel neighborhood relationships. First-order statistic’s analysis

of texture is based on the intensity value concentrations on all or part of an image.

Common features include moments such as mean, variance, dispersion, mean square

value or average energy, entropy, skewness and kurtosis. The intensity levels of an

image is thus a concise and simple summary of the statistical information contained in

the image.

Among the second- and higher-order statistics, the most commonly used method-

ologies are:

• Gray Level Cooccurrence Matrix (GLCM). Originally proposed by Haralick [46],

this matrix estimates texture properties related to second-order statistics. The

matrix is conformed by records of differences of intensities of pairs of pixels, located

at a given distance and orientation. Some features computed from the GLCM are

the energy, entropy, contrast, homogeneity, among others.

• Autocorrelation function [47]. The autocorrelation function of an image can be
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used to assess the amount of regularity, as well as the fineness/coarseness of the

texture present in the image.

• Gray Level Sum and Difference Histograms (SDH). Proposed by Unser [134], these

histograms were introduced as an alternative to the co-occurrence matrices used

for texture analysis. The advantage of the SDH over the GLCM is the decreasing

of the computation time and memory storage requirements.

• Non-parametric approaches. These approximations analyze textures at a micro

level based on the calculation of local patterns. Examples of non-parametric

approaches include the Local Binary Patterns (LBP) introduced by Ojala and

Pietikainen [96] and the Coordinated Cluster Representation (CCR) proposed by

Kurmyshev et al. [63].

4.2 Texture analysis problems

The various methods for modeling textures and extracting texture features can be ap-

plied in four broad categories of problems:

Texture classification

Texture classification is an open problem referring to the assignment of an unknown

texture image into one of the several pre-learned texture classes. In general, texture

image classification approaches are grouped as supervised or unsupervised, depending if

there is a learning stage. In the unsupervised methods, the prior definition of classes is

not required. These algorithms classify images in a predefined number of classes, using

just the inherent information in the available data.

The supervised texture classification process involves two phases: the learning phase

and the recognition phase. In the learning phase, the goal is to build a model for the

texture content of each class present in the training data, which generally comprises of
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images with known class labels. The texture content of the training images is captured

with the chosen texture analysis method, which yields a set of textural features for each

image. In the recognition phase, the texture content of an unknown sample is first

characterized with the same texture analysis method. Then, the textural features of

the sample are compared to those of the training images with a classification algorithm.

Finally, the unknown sample is assigned to the category with the best match. Option-

ally, if the best match is not sufficiently good according to some predefined criteria, the

unknown sample can be rejected.

Texture segmentation

As it was mentioned in Chapter 1, the segmentation of a given image may be accom-

plished using different kinds of attributes, texture in this case. Texture segmentation

is one of the most challenging problems. The issue begins with the lack of a formal

definition of textures, which explains the difficulty to conceptualize a model able to de-

scribe it. The human eye can easily recognize different textures, but it is quite difficult

to define them in quantitative terms.

Texture synthesis

Texture synthesis is an active research area with wide applications in fields like computer

graphics, image processing and computer vision. The texture synthesis problem can

be stated as follows: given a finite sample texture, automatically create an outcome

with similar visual attributes to the input and an arbitrarily defined size. Texture

synthesis algorithms are intended to create an output image that meets the following

requirements:

• The output should have the size given by the user.

• The output should be as similar as possible to the sample.
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• The output should not have visible artifacts such as seams, blocks and misfitting

edges.

• The output should not repeat, i.e., the same structures in the output image should

not appear in multiple places.

Like most algorithms, texture synthesis should be efficient in computation time and

in memory use.

Texture synthesis is a useful alternative way to create arbitrarily large textures.

Furthermore, since it is only necessary to store a small sample of the desired texture, the

synthesis can bring great benefits in memory storage. Most texture synthesis research

has been focused on static textures. However, dynamic texture synthesis is receiving a

growing attention during recent years.

Shape from texture

This problem is stated as the reconstruction of a 3D object from a 2D image. The 2D

image is itself a repetition of texels and the apparent distortions of such texels are used

to estimate the surface orientation of the 3D object. One of the first task to achieve the

solution of this problem is to estimate the texel shape parameters.

4.3 Conducted research in texture analysis

Before the incorporation of texture features in an image segmentation framework, we

have conducted intensive work within the the texture analysis research field. In order

to remain focused on the segmentation problem, the main contributions of such work

are going to be briefly presented in the following subsections. The studies developed

were published in texture classification (Subsection 4.3.1), texture synthesis (Subsec-

tion 4.3.2) and shape from texture (Subsection 4.3.3) research areas.
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Figure 4.2: Operation of a fuzzy rule-based system for texture classification [73].

4.3.1 Visual texture classification using fuzzy inference

In this subsection, a supervised rule-based system for visual texture classification founded

on fuzzy logic is briefly described. This approximation is, in general, built by two stages:

learning and recognition. The learning phase mainly consists in the definition of the

fuzzy if-then rules. This definition is based on a fuzzification of a set of quantitative

features extracted from the given samples using a clustering approach. The set of rules

obtained from the learning process is used in the recognition phase to obtain a class

label. Rule-based systems allow us to represent the knowledge, and capture the ex-

pertise, in a set of if-then rules. In these rules, the premises are evaluated in order to

obtain a conclusion. The recognition phase also consists in a feature extraction and a

fuzzification step. Through a fuzzy inference process, the label assignation is achieved

(See Figure 4.2).

In general, a fuzzy method for classification of textured images is proposed. The

method is a multi-input and one output system, where the inputs are statistical textural

features and the output is a label (class) assignation. A set of if-then type rules is built

(one for each class) from known subimages of each class and the recognition is evaluated

using unknown subimages from each class. A test texture sample is assigned to the rule

whose activation level is the highest. Despite inherent difficulties in the classification

problem, our system achieves good classification rates.
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A fuzzy classifier is an alternative to the traditional systems, because of their tol-

erance to imprecision and uncertainty. In addition, we can highlight benefits by using

fuzzy rules, since they can describe an image using linguistic terms. More technical

details can be consulted in [73].

4.3.2 Dynamic texture synthesis with a spatiotemporal descriptor

Dynamic textures are essentially textures in motion, and have been defined as video

sequences that show some kind of repetitiveness in time or space [40, 27]. Examples of

these textures include recordings of smoke, foliage, and water in motion. Comparatively

to the static texture synthesis, given a finite video sample of a dynamic texture, a

synthesis method must create a new video sequence which looks perceptually similar to

the input in appearance and motion.

In [71], we propose the use of local spatiotemporal patterns [142], as features in a

non-parametric patch-based method for dynamic texture synthesis. The use of such

features allows to capture the structure of local brightness variations in both spatial

and temporal domains and therefore, describe the appearance and motion of dynamic

textures. In our method, we take advantage of these patterns in the representation and

selection of patches. With this improvement, we capture more structural information

for a better patch matching, preserving properly the structure and dynamics of the

given input sample. In this way, we can simplify the synthesis method with a very

competitive performance in comparison with other patch-based methods.

The main contributions of this work are: (1) The extension of a patch-based ap-

proach, previously applied only for static texture, for its use in dynamic texture synthe-

sis. (2) The dynamic texture description through local spatiotemporal features, instead

of using only the color of the pixels. With this improvement we capture the local struc-

tural information for a better patch matching, preserving properly the appearance and

dynamics of a given input texture. (3) A simplified method where the computation of

an optimal seam between patches can be omitted. This can be achieved because of a
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Figure 4.3: Final procedure to achieve the synthesis in both spatial and temporal do-
mains [71].

better fitting and matching of patches. (4) A robust and flexible method that can cope

with different kinds of dynamic textures videos, ranging from videos that show spatial

and temporal regularity, those conformed by constrained objects and videos that con-

tain both static and dynamic elements, showing irregularity in both appearance and

motion. (5) A combination with a temporal domain synthesis method, in such a way

that we can perform the synthesis in both the spatial and temporal domains. (6) The

use of such method for video completion tasks.

The experiments show that the use of the local spatiotemporal representation outper-

forms other methods, without generating visible discontinuities or annoying artifacts.

Results are evaluated using a double stimulus continuous quality scale methodology,

which is reproducible and objective. We also introduce results for the use of our method

in video completion tasks. Additionally, we hereby present that the proposed technique

is easily extendable to achieve the synthesis in both spatial and temporal domains. More

technical details can be consulted in the aforementioned paper [71].

4.3.3 Fast texel size estimation in visual texture using homogeneity

cues

As it was mentioned in the introduction to this chapter, a structural approach estab-

lishes texture as an arrangement composed of ordered patterns, usually known as texture

elements (texels) or textons, which are defined as the fundamental microstructure in
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the image [143]. The texel size estimation has been very useful to address a number

of problems, including shape from texture [77], texture recognition [66], texture syn-

thesis [25, 26, 76, 70, 42], texture compression [85] and defect detection [94], among

others. Furthermore, the texel can be used as a reference to improve the performance

in classification tasks [54, 72, 67], segmentation [128, 82] and achieve scale invariant

texture analysis [61, 141].

In the paper [74], a fast and robust approach to texel size detection in periodic

and near-periodic textures is presented. The texel size estimation is addressed on peri-

odic and near-periodic texture images. Such a problem has shown to be difficult when

corrupted and distorted patterns are analyzed, and the accuracy and robustness are

significant. In this study, the use of homogeneity cues computed using a difference his-

togram is proposed. The use of homogeneity cues for texture periodicity extraction has

been specifically formulated for extracting horizontal and vertical displacement vectors,

that correspond with a squared or rectangular tiling unit.

The main contributions of this work are: (1) The texel size can be automatically

detected localizing the maximum value of the homogeneity cues. (2) The computation

of such cues is not intricate nor time-consuming. (3) The method does not need a

preprocessing step of the input. (4) Homogeneity cues are very effective and robust

in identifying the texel size, even with noisy or deformed images. (5) This method

can provide a very good approximation of texel size of near-regular textures. As an

example taken from [74], we show an artificial and periodic texture with a tiling size

unit of 72 × 42 pixels size in Fig. 4.4(a), and its corresponding homogeneity plots in

Fig. 4.4(b) for both directions, horizontal and vertical. In Fig. 4.4(b) the periodic nature

of both plots can be seen. The corresponding texel size is marked as a rectangle overlaid

in Fig. 4.4(a), other three rectangles were added for comparison purposes. Notice that

this tiling unit is repeated over the field of view, creating the texture image.

Experiments were carried out in order to evaluate the performance of this method.

Results on artificially distorted images and on natural near-periodic images, show that
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Figure 4.4: An artificial texture (a) with a texel of 72×42 pixels size and its homogeneity
function (b) in both, horizontal and vertical directions [74].

the proposed approach is more accurate and robust than other state-of-the-art methods.

Furthermore, the computation of homogeneity cues is not intricate nor time-consuming,

and hence, it can be considered for practical applications where computation time is

critical.

4.4 Concluding remarks of the chapter

The texture is one of the fundamental features used in the visual analysis of scenes.

Texture is a property of all surfaces arising in many applications, such as in natural

image segmentation. It is therefore, important to develop robust and efficient methods

for processing textured images. In this chapter, we have reviewed the basic concepts

and different methods for processing visual texture. Although an enormous research

effort has been dedicated to the development of optimal texture analysis strategies,

the problem of robust texture extraction is still an open issue. Depending of the fi-

nal application, the appropriate integration of features in low-level tasks, as in image

segmentation methods, is essential for the success of a given method.
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The fundamental problems concerning the analysis of texture have been also intro-

duced in this chapter, and the research conducted in the texture analysis field has been

presented. A method using fuzzy inference for the classification of textures, the use of a

spatiotemporal descriptor for dynamic texture synthesis and a fast texel size estimation

in visual texture using homogeneity cues, have been briefly described.

The conducted research on this field, certainly helped for the main contribution of

this dissertation, which consists on the incorporation of texture and color cues in a

methodology based on rough set theory for segmentation tasks. Details of this method

are presented in the next chapter.
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CHAPTER 5

Integration of color and texture cues in

a rough set-based segmentation method

In this chapter, a proposal for the integration of features in a rough set-based segmenta-

tion approach using color and texture cues (from now on, this method is referred to as

RCT), is presented. The rough set-based methodology takes advantage of the fact that

it includes spatial information about the pixels and associates them with their neighbors

with similar features. In this proposal, the color is represented in a perceptual color

space, while the texture features are computed using a standard deviation map that

records intensity variations in a given neighborhood.

This chapter is organized as follows. In Section 5.1 the proposed segmentation

framework is presented, starting with an overall description of the method. Additionally,

in this section, our feature extraction scheme and its implementation in the proposed

approach are also introduced. The experiments and results are given in Section 5.2,

followed by the concluding remarks in Section 5.3.
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5.1 Proposed segmentation framework

The process of the proposed segmentation approach is illustrated in Fig. 5.1. In gen-

eral, it is separated into three main steps: feature extraction, the pre-segmented image

obtention and finally, the application of a region merging step, in order to diminish

over-segmentation issues. First, a color space transformation from the RGB space to

the CIELab perceptual space is applied to the input image, using the same equations

presented in Section 3.1.1 from Chapter 3. The texture features T , described in the

following section, are extracted from the lightness component L in the CIELab space.

Hence, the color components a and b and the texture features T are represented in sepa-

rate channels. After that, the rough set-based segmentation approach is performed, and

the pre-segmented image is obtained. This approach allows the association of the feature

information in a local neighborhood, and makes the segmentation fully unsupervised.

Specifically, in this step, it is important to mention that Mushrif and Ray [91] have

proposed to use C = {R,G,B} as the three channels of information. In our color-alone

approximation described in Chapter 3, we have changed the image representation to the

three channels C = {L, a, b} and in the proposal presented in this chapter, the image

representation is carried out as C = {T, a, b}. At the end of our method, a region merg-

ing step is performed on the union of the three outcomes, reducing over-segmentation.

The color space transformation, the rough set-based segmentation and the region merg-

ing blocks from Fig. 5.1 are the same as the ones described in Sections 3.1.1, 3.1.2

and 3.1.3 from Chapter 3, respectively. In the following section, the use of a standard

deviation map as a texture feature is presented.

5.2 A standard deviation map as texture feature

The pixels in textured regions of an image show more intensity variations than the

pixels in homogeneous regions therefore, a measure of those variations, e.g. the standard
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Figure 5.1: The general process of the proposed segmentation approach, RCT.
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deviation, may be used to determine such textured regions. In this regard, a standard

deviation map is obtained as follows: for each pixel in the image, the standard deviation

σ of the pixel intensities in a neighborhood is calculated. This neighborhood consists

of a square region containing k = (2d + 1)2 pixels, and centered at the current pixel

position. The parameter d is the number of pixels from the central pixel to a side of

the window. Equations 5.1 and 5.2 are used to obtain σ

µr =
1

k

k
∑

i=1

xri (5.1)

σ =
√

µ2 − µ2
1 (5.2)

where x is the intensity value for the i-th pixel of the neighborhood, and µ1 and µ2 are

the first and second statistical moments around zero, respectively. Special considera-

tions are required for those pixels close to the image edges, where the corresponding

neighborhood extends beyond the image boundaries. If the pixels outside the image are

considered to be of intensity zero, false texture variations appear at the edges of the

standard deviation map. To reduce these artifacts, the intensities of the pixels outside

the image are matched to the intensity of the pixels inside the image that are located

at the same distance from the edge. This mirroring procedure preserves the texture

characteristics of the regions near to the image edges.

Examples of the resulting standard deviation maps using a d = 10 are shown in

Fig. 5.2. It can be noticed from these examples that the different texture regions

are shown in gray levels. The near-black regions correspond to regions of homogeneous

intensity in the original image. The gray levels are in function of the intensity variations

of the texture. These examples show that this feature is powerful enough to distinguish

the textured regions within an image.
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Figure 5.2: Examples of the resulting standard deviation maps with a d = 10.

5.3 Experiments and Results

In this section, the experiments conducted on natural scene images in order to evaluate

the performance of our proposal, are presented. The evaluation is accomplished by a

thorough qualitative and quantitative analysis. Additionally, the assessment of the RCT

in comparison to other similar and recent state-of-the-art approaches is also presented.

The corresponding parameters were empirically tuned, following the same methodology

described in the section 3.3.1 in Chapter 3.

In order to revisit our method and illustrate it, an example of the resulting images

in each step and the final segmented image are presented in Fig. 5.3. In Figs. 5.3a,

5.3b and 5.3c, we can see the images of the feature channels used in RCT: a, b and

T , respectively. The pre-segmented image is shown in Fig. 5.3d. Such an image is

the result of the rough set-based segmentation, before to its submission to the merging

process. The Fig. 5.3e shows the resulting segmentation of RCT after the merging

process, where the over-segmentation issues were significantly reduced. In this image,

we can see that the pixels of the flower petals are associated in one segment despite

the intensity differences of the red color. Moreover, the RCT method is able to clearly

separate the red petals of the flower from the yellow center and the green background.
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Figure 5.3: Resulting images of the inner process. Feature components (a) a, (b) b and
(c) T , respectively. (d) The pre-segmented image before the region merging process and
(e) the final segmented image.
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Table 5.1: Performance analysis of the RCT method using the three measures.
GCE BDE PRI

Mean (µ) 0.175 8.007 0.785
Std. Dev. (σ) 0.105 4.450 0.121

For the evaluation of the RCT method, the scenario described in Chapter 1 for the

assessment of segmentation algorithms is replicated, where the Berkeley Segmentation

Data Set (BSD) [83] is used and the quantitative evaluation is carried using the three

metrics: Probabilistic Rand Index (PRI) [132], Global Consistency Error (GCE) [83]

and the Boundary Displacement Error (BDE) [34].

The distributions of the three measures GCE, BDE and PRI for the 300 images in

the BSD are presented in Fig. 5.4. This figure shows the frequency at which the RCT

method attains a given value in each quantitative measure. For the PRI distribution

(Fig. 5.4a), one can note the leaning of the PRI distribution to the maximum value of

1. This means that a high number of images achieve high PRI values, implying that the

outcomes using the RCT method have a correspondence with the ground-truth. This

figure also shows the tendency of the GCE (Fig. 5.4b) and BDE (Fig. 5.4c) distributions,

where the tendency towards an error of zero is noticeable. The corresponding mean

performance and the standard deviation for each quantitative measure GCE, BDE and

PRI are shown in Table 5.1.

A comparison of the performance, in terms of the quantitative measures against

other recent and similar approaches, was conducted. The first comparison is performed

against the color-based technique proposed by Mushrif [92] using A-IFS histon that uses

the RGB color representation. In the original A-IFS histon based article, the average

performance is assessed using only the PRI measure. The average performance reported

for the A-IFS method is 0.7706, which is lower than the 0.785 achieved by our RCT.

This implies that the image representation in perceptual color spaces and the inclusion

of texture information improves the performance of rough set-based methodologies.
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Figure 5.4: Distribution of the resulting values of the three measures for the Berkeley
Data set. For (a) a higher value is better and for (b) and (c) a smaller value is better.
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Table 5.2: Average performance and comparison with other methods. Within the paren-
theses is the number of images used by the authors for their evaluation.

GCE BDE PRI

JSEG (300) 0.196 8.960 0.774
CTM (300) 0.18 9.490 0.760
CSC (100) 0.225 8.634 0.796

RCT (300) 0.175 8.007 0.785

A comparison with other three state-of-the-art algorithms that use both color and

texture features was also carried out in our evaluation: the JSEG method proposed by

Deng et al. [24], the CTM approach introduced by Yang et al. [138] and the method

presented by An and Pun [2] referred to as CSC.

The average performance of each method using the three quantitative measures

is presented in Table 5.2. For the JSEG and the CTM approaches, the source code

provided at their web pages were executed with the 300 BSD images. For the CSC

method, the results presented by the authors were taken from the original article. This

table shows that the best results for the GCE and the BDE measures are achieved by

the proposed RCT method. This means that our method is more accurate, since it has

the lowest errors in relation to the ground-truth segmentations. Comparing methods

using the PRI measure, the method RCT has obtained a 0.785 score, outperforming the

JSEG (0.774) and CTM (0.760) approaches. The method that attains the highest PRI

value is the CSC, reporting an average PRI of 0.796.

It is important to highlight that the CSC evaluation, as mentioned in the original

article [2], has been carried out using only a subset of 100 images from the complete set

of 300 images from the BSD. Since the authors of such CSC method do not define the

selected subset of images used in their experiments, the tendency of the mean achieved

by our RCT is analyzed for different subset sizes. For this analysis, we have taken the

K = {1, 2, . . . , 300} images from the RCT results that achieve the best performance for

the PRI measure. The PRI mean tendency is presented in Fig. 5.5, where it is shown
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Figure 5.5: Progress of the PRI measure mean achieved by the RCT method depending
of the number of images taken from the BSD.

that if the number of testing images is increased, the average performance decreases.

In this figure we can see that if 291 images are used, the RCT method achieves the

mean performance of the CSC method of 0.796. Furthermore, if the best 100 images

are taken for the RCT evaluation, our method achieves a mean PRI value of 0.8894, a

much higher value than the 0.796 obtained by the CSC method.

A qualitative comparison of the segmentation results is presented in Fig. 5.6, where

the first column corresponds to the CTM outcomes, the second column shows the re-

sultant images of the JSEG method, and our RCT segmentations are shown in the

third column. We only present qualitative comparisons of the methods whose results

are available. In these examples, the edges of the segments are overlaid on the original

image. From this qualitative comparison, we can observe that the RCT method is in

general able to associate pixels with similar color and texture in single segments. For

example in Fig. 5.6a, there are over-segmentation issues in the outcomes of the CTM
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and JSEG methods. In Fig. 5.6b a challenging image is shown, since the color of the

cheetah and its background are very similar. For this case, only the CTM and the RCT

methods are able to separate the differences in texture of this image. In Fig. 5.6c one

can notice the ability of RCT for the association of the different intensities of blue in the

sky, while the other methods separate them in two (Fig. 5.6c2) or even in three different

segments (Fig. 5.6c1). This ability can be also appreciated in Fig. 5.6d, where the RCT

is able to merge the elephants in only one segment. In the case of Fig. 5.6e and Fig. 5.6f

the performance of the three methods is very similar. The last example shows how the

CTM and the RCT succeed in the association of the pixels of the kangaroo while the

JSEG attains an over-segmentation.

5.4 Concluding remarks of the chapter

In this chapter, the integration of color and visual texture cues in a rough set theory-

based segmentation approach has been proposed. Some advantages have been identified

in comparison to other methods. The proposed RCT approach considers the spatial

correlation and similarity of neighboring pixels, including information of both color and

texture. Moreover, an important advantage over the clustering methods is that the RCT

methodology does not require cluster initialization because the number of segments is

automatically estimated for each image. The RCT method computes the similarity

between pixels within a neighborhood, using both their color and textural information.

These features have shown to be simple to compute and yet representative of the image

information. A thorough analysis of the performance of the RCT method showed that

it can be successfully applied to natural image segmentation, where the resemblance to

the human perception may be desirable.

In general, it is observed that the use of a perceptual color representation, and the

addition of textural features attains best results than using only color cues. Additionally,

the presented modifications, like the significant peaks’ selection jointly to the merging
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Figure 5.6: A qualitative comparison of 7 out of 300 segmentation results between the
CTM (first column), JSEG (second column) and our RCT (third column). The borders
of the segments are overlaid on the original image.
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strategy, allow best results in comparison to other state-of-the-art methods in terms of

a set of quantitative measures.
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Segmentation of natural images is a challenging task because the color and texture at-

tributes are not uniformly distributed and as a result, the process of identifying the

homogeneous regions in the image is very difficult. In this regard, the use of com-

putational intelligence tools is proposed in this thesis. Such techniques, in contrast to

classical hard computing techniques, are tolerant of imprecision, uncertainty and partial

truth, typical characteristics of natural images. Specifically, among the computational

intelligence tools, we apply the rough sets’ concepts.

In this study, a set of modifications were proposed in order to improve a rough set-

based segmentation method for color-alone segmentation. In addition, we explore the

use of both color and texture features in such improved methodology. Main contribu-

tions of the proposed color-alone segmentation approach are twofold. First, by using an

adaptive threshold selection, the approach is automatically adjustable according to the

image content. Second, a region merging process, which takes into account both fea-

tures and spatial relations of the resulting segments, let us minimize over-segmentation

issues. These two improvements lead our method to overcome some performance is-

sues shown by the previous rough set theory-based approaches. In addition, a study to

determine the best suited color representation for this approach was carried out, con-

cluding that the best results were obtained using perceptually uniform color spaces. The

use of a perceptual color representation allows our system to improve the performance
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in the association of similar colors. The evaluation was accomplished by a thorough

qualitative and quantitative analysis. Experiments on an extensive database show that

these modifications result in a method with better outcomes, outperforming other rough

set-based approaches and classic reference segmentation algorithms used for color-alone

segmentation.

After the color-alone segmentation was achieved, the integration of color and visual

texture cues in the rough set theory-based segmentation approach has been proposed.

This approach computes the similarity between pixels within a neighborhood, using

both their color and textural information. The color cues correspond to the a and b

channels of the CIELab color space, and the texture feature is computed as a standard

deviation map. These features have shown to be simple to compute and yet representa-

tive of the image information. A thorough analysis of the performance of the proposed

method showed that it can be successfully applied to natural image segmentation, where

the resemblance to human perception may be desirable. Furthermore, a quantitative

evaluation shows that the synergistic integration of features in this framework results

in better segmentation outcomes, in comparison to those obtained by other related and

state-of-the-art methods proposed for the same task.

Perspectives and future work

Different perspectives, ideas and future work arise from the development of this method-

ology. The first opportunity area in this framework is the parameter optimization. In

this thesis, the best parameters are found with an empirical methodology with an ex-

haustive search. Such optimization may be improved using an evolutionary computation

algorithm. In the computation of thresholds and similarity distances, it is possible to

include a fuzzy logic approach, which gives a mechanism to represent the ambiguity

within an image.

Other directions of future research can be focused on improving the computational

time associated with the proposed method. The most computationally intensive com-
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ponent is the region merging, whose implementation can be optimized.

Further work may involve the use of the proposed framework for different high-level

tasks, for example: its application to the segmentation of medical data, visual navigation

of a robot, or its use in the development of content based image retrieval systems.
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synthesis in space with a spatio-temporal descriptor. In J.-I. Park and J. Kim,

editors, Asian Conference on Computer Vision 2012 Workshops, Part I, volume

7728 of LNCS, pages 38–49, 2013.

[72] R. Lizarraga-Morales, R. Sanchez-Yanez, and V. Ayala-Ramirez. Optimal spatial

predicate determination of a local binary pattern. In Proc. of the 7th IASTED

92



REFERENCES

International Conference on Visualization, Imaging and Image Processing, VIIP

’09, pages 41–46. Acta Press, 2009.

[73] R. Lizarraga-Morales, R. Sanchez-Yanez, and V. Ayala-Ramirez. Visual texture

classification using fuzzy inference. In I. Batyrshin and G. Sidorov, editors, Proc.

Tenth Mexican International Conference on Artificial Intelligence MICAI 2011,

pages 150–154, 2011.

[74] R. A. Lizarraga-Morales, R. E. Sanchez-Yanez, and V. Ayala-Ramirez. Fast texel

size estimation in visual texture using homogeneity cues. Pattern Recognition

Letters, 34(1):414–422, 2013.

[75] S. P. Lloyd. Least squares quantization. IEEE Transactions on Information

Theory, 28(2):129–137, March 1982.

[76] A. Lobay and D. Forsyth. Recovering shape and irradiance maps from rich dense

texton fields. In Proc. of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition,, pages 400–406, Los Alamitos, CA, USA, 2004.

IEEE Computer Society.

[77] A. Lobay and D. A. Forsyth. Shape from texture without boundaries. Interna-

tional Journal of Computer Vision, 67(1):71–91, Apr. 2006.

[78] L. Lucchese and S. Mitra. Colour image segmentation: A state-of-the-art. In

Proc. of the Indian National Science Academy, volume 67, pages 207–221, March

2001.

[79] J. Maeda, A. Kawano, S. Yamauchi, Y. Suzuki, A. R. S. Marcal, and T. Mendonca.

Perceptual image segmentation using fuzzy-based hierarchical algorithm and its

application to dermoscopy images. In IEEE Conference on Soft Computing in

Industrial Applications, 2008. SMCia ’08, pages 66–71, 2008.

93



REFERENCES

[80] L. Magdalena. What is soft computing? revisiting possible answers. International

Journal of Computational Intelligence Systems, 3(2):148–159, 2010.

[81] P. Maji and S. K. Pal. Rough set based generalized fuzzy c-means algorithm and

quantitative indices. IEEE Transactions on Systems, Man, and Cybernetics, Part

B, 37(6):1529–1540, 2007.

[82] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and regions: Cue

integration in image segmentation. In Proc. of the International Conference on

Computer Vision, volume 2 of ICCV ’99, pages 918–925, 1999.

[83] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms and mea-

suring ecological statistics. In Proc. 8th International Conference on Computer

Vision, volume 2, pages 416–423, July 2001.

[84] J. Melendez, M. A. Garcia, D. Puig, and M. Petrou. Unsupervised texture-based

image segmentation through pattern discovery. Computer Vision and Image Un-

derstanding, 115(8):1121–1133, 2011.

[85] G. Menegaz, A. Franceschetti, and A. Mecocci. Fully automatic perceptual mod-

eling of near regular textures. In SPIE Human Vision and Electronic Imaging

XII, volume 6492, pages 64921B.1–64921B.12. SPIE, 2007.

[86] C. Meurie, A. Cohen, and Y. Ruichek. An efficient combination of texture and

color information for watershed segmentation. In Image and Signal Processing,

pages 147–156. Springer, 2010.

[87] M. Mignotte. Segmentation by fusion of histogram-based k-means clusters in

different color spaces. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 17(5):780–787, May 2008.

94



REFERENCES

[88] M. Mignotte. MDS-based segmentation model for the fusion of contour and tex-

ture cues in natural images. Computer Vision and Image Understanding, 116:981–

990, 2012.

[89] A. Mohabey and A. Ray. Rough set theory based segmentation of color images.

In Proc. of the 19th International Conference of the North American Fuzzy Infor-

mation Processing Society, pages 338 –342, 2000.

[90] A. Mrozek and L. Plonka. Rough sets in image analysis. Foundations of Computing

and Decision Sciences, 18(3-4):268–273, 1993.

[91] M. M. Mushrif and A. K. Ray. Color image segmentation: Rough-set theoretic

approach. Pattern Recognition Letters, 29(4):483–493, 2008.

[92] M. M. Mushrif and A. K. Ray. A-IFS histon based multithresholding algorithm for

color image segmentation. IEEE Signal Processing Letters, 16(3):168–171, 2009.

[93] P. Nammalwar, O. Ghita, and P. F. Whelan. Integration of feature distributions

for color texture segmentation. In Proc. of the 17th International Conference on

Pattern Recognition, volume 1, 2004.

[94] H. Ngan and G. Pang. Regularity analysis for patterned texture inspection. IEEE

Transactions on Automation Science and Engineering, 6(1):131–144, jan. 2009.

[95] T. Ojala and M. Pietik˙ Unsupervised texture segmentation using feature distri-

butions. Pattern Recognition, 32(3):477 – 486, 1999.
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List of Abbreviations

CI : Computational Intelligence (See Chapter 1).

BDE : Boundary Displacement Error [34].

BSD : Berkeley Segmentation Data base and Benchmark [83].

GCE : Global Consistency Error [83].

NCuts : Normalized cuts method [118].

PRI : Probabilistic Rand Index [132].

PRM : Perceptual Roughness index-based segmentation Method (See Chapter 3).

RCT : Roughness index-based segmentation approach using Color and Texture fea-

tures (See Chapter 5).

RBM : Roughness index-based segmentation Method [91]

RSLD : Roughness approach through Smoothing Local Difference [139].
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